cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A057958 Number of prime factors of 3^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 3, 2, 5, 3, 5, 2, 7, 3, 6, 3, 8, 2, 5, 5, 10, 3, 8, 3, 10, 4, 7, 3, 11, 5, 5, 6, 9, 4, 11, 4, 12, 5, 8, 6, 12, 3, 7, 7, 13, 4, 11, 3, 11, 9, 6, 5, 17, 7, 10, 6, 9, 4, 13, 8, 13, 7, 9, 3, 17, 3, 8, 6, 14, 7, 12, 4, 12, 6, 11, 2, 16, 5, 8, 10, 11, 7, 15, 4, 18, 9, 8, 5, 18, 7, 6, 8, 16, 4, 19, 5
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), this sequence (b=3), A046051 (b=2).

Programs

Formula

Mobius transform of A085028. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024023(n)). - Amiram Eldar, Feb 01 2020

Extensions

Offset corrected by Amiram Eldar, Feb 01 2020

A057952 Number of prime factors of 9^n - 1 (counted with multiplicity).

Original entry on oeis.org

3, 5, 5, 7, 6, 8, 5, 10, 8, 10, 7, 11, 5, 9, 11, 12, 8, 12, 7, 13, 11, 11, 6, 17, 10, 9, 13, 13, 9, 17, 8, 14, 12, 12, 11, 16, 8, 11, 15, 18, 8, 18, 6, 16, 19, 10, 10, 21, 12, 18, 15, 13, 8, 18, 15, 19, 15, 13, 7, 24, 7, 13, 19, 16, 12, 18, 8, 17, 15, 20, 9, 24, 9, 13, 22, 17, 13, 22
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A046051 (b=2), A057958 (b=3), A057957 (b=4), A057956 (b=5), A057955 (b=6), A057954 (b=7), A057953 (b=8), this sequence (b=9), A057951 (b=10), A366682 (b=11), A366708 (b=12).

Programs

  • Mathematica
    PrimeOmega[Table[9^n - 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

Mobius transform of A085034. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024101(n)) = A057958(2*n). - Amiram Eldar, Feb 02 2020
a(n) = A057941(n) + A057958(n). - Max Alekseyev, Jan 07 2024

A274906 Largest prime factor of 4^n - 1.

Original entry on oeis.org

3, 5, 7, 17, 31, 13, 127, 257, 73, 41, 683, 241, 8191, 127, 331, 65537, 131071, 109, 524287, 61681, 5419, 2113, 2796203, 673, 4051, 8191, 262657, 15790321, 3033169, 1321, 2147483647, 6700417, 599479, 131071, 122921, 38737, 616318177, 525313, 22366891
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^7 - 1 = 16383 = 3*43*127, so a(7) = 127
		

Crossrefs

Second bisection of A005420. - Michel Marcus, Jul 13 2016
Cf. largest prime factor of k^n-1: A005420 (k=2), A074477 (k=3), this sequence (k=4), A074479 (k=5), A274907 (k=6), A074249 (k=7), A274908 (k=8), A274909 (k=9), A005422 (k=10), A274910 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[4^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024036(n)). - Michel Marcus, Jul 11 2016
a(n) = max(A002587(n),A005420(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(603) in b-file from Amiram Eldar, Feb 08 2020
a(604)-a(1128) in b-file from Max Alekseyev, Jul 25 2023, Mar 15 2025

A366579 a(n) = phi(3^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 4, 12, 40, 120, 288, 1092, 3072, 7776, 23600, 87120, 259200, 797160, 1847104, 5832000, 21523360, 63672480, 152845056, 580921200, 1700870400, 4368821184, 12550120000, 47071589412, 130459631616, 413939700000, 997562438080, 3012122557440, 11159367815680
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(3^n+1)}

Formula

a(n) = phi(3^n+1) = A000010(A034472(n)).

A366580 Number of distinct prime divisors of 3^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 2, 3, 4, 3, 3, 3, 2, 4, 5, 2, 4, 4, 3, 3, 5, 4, 2, 6, 4, 4, 6, 4, 4, 5, 3, 2, 6, 4, 4, 4, 4, 4, 7, 5, 3, 7, 2, 5, 9, 4, 4, 4, 4, 6, 8, 4, 3, 5, 6, 6, 7, 4, 3, 7, 3, 5, 11, 2, 4, 6, 3, 5, 8, 8, 6, 8, 3, 5, 11, 6, 5, 7, 4, 5, 11, 5, 5, 10, 8
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[3^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(3^n + 1), ", "))

Formula

a(n) = omega(3^n+1) = A001221(A034472(n)).

A379642 Smallest primitive prime factor of 9^n-1.

Original entry on oeis.org

2, 5, 7, 41, 11, 73, 547, 17, 19, 1181, 23, 6481, 398581, 29, 31, 21523361, 103, 530713, 1597, 42521761, 43, 5501, 47, 97, 151, 53, 109, 430697, 59, 47763361, 683, 926510094425921, 25411, 956353, 71, 282429005041, 18427, 5301533, 79, 14401, 83, 2857, 431, 89
Offset: 1

Views

Author

Sean A. Irvine, Dec 28 2024

Keywords

Comments

Also, smallest prime p such that 1/p has nonary period n.

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).
Cf. A274909.

Programs

  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(9^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); }

A059891 a(n) = |{m : multiplicative order of 9 mod m = n}|.

Original entry on oeis.org

4, 6, 12, 14, 20, 58, 12, 88, 112, 150, 60, 290, 12, 138, 732, 144, 124, 1088, 60, 670, 740, 570, 28, 13864, 360, 138, 3968, 1362, 252, 22058, 124, 320, 1972, 1146, 732, 10704, 124, 570, 12260, 15176, 124, 60470, 28, 11634, 195728, 282, 508, 116592, 2032
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) = number of orders of degree-n monic irreducible polynomials over GF(9).
Also, number of primitive factors of 9^n - 1. - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), this sequence (b=9), A059892 (b=10).
Column k=9 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(9^d-1), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 9^d-1], {d, Divisors[n]}];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(9^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(9^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A366577 Number of divisors of 3^n+1.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 8, 6, 8, 24, 12, 12, 8, 6, 16, 48, 4, 24, 16, 12, 8, 72, 16, 6, 64, 24, 16, 96, 16, 24, 48, 12, 4, 96, 16, 24, 16, 24, 16, 192, 32, 12, 128, 6, 32, 768, 16, 24, 16, 24, 128, 384, 16, 12, 32, 96, 64, 192, 16, 12, 128, 12, 32, 4608, 4, 24, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=4 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,3^Range[0,100]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    a(n) = numdiv(3^n+1); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = sigma0(3^n+1) = A000005(A034472(n)).

A366578 Sum of the divisors of 3^n+1.

Original entry on oeis.org

3, 7, 18, 56, 126, 434, 1332, 3836, 10476, 42560, 109926, 315112, 816732, 2790074, 8906760, 30220288, 64570086, 229156928, 706911048, 2034690952, 5357742012, 21838961760, 56496274632, 164750562956, 456919958880, 1517043139136, 4661686010664, 16489453890560
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=126 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)

Formula

a(n) = sigma(3^n+1) = A000203(A034472(n)).

A002592 Largest prime factor of 9^n + 1.

Original entry on oeis.org

2, 5, 41, 73, 193, 1181, 6481, 16493, 21523361, 530713, 42521761, 570461, 769, 4795973261, 647753, 47763361, 926510094425921, 1743831169, 282429005041, 25480398173, 128653413121, 109688713, 56625998353, 70601370627701
Offset: 0

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 89.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A274903.

Programs

  • Magma
    [Maximum(PrimeDivisors(9^n+1)): n in [0..40]]; // Vincenzo Librandi, Jul 12 2016
  • Maple
    for n from 0 to 30 do t1:=ifactor(9^n+1); od;
  • Mathematica
    Table[FactorInteger[9^n + 1][[-1, 1]], {n, 0, 10}] (* Vincenzo Librandi, Jul 12 2016 *)

Formula

a(n) = A006530(A062396(n)). - Vincenzo Librandi, Jul 12 2016
a(n) = A074476(2*n). - Max Alekseyev, Apr 25 2022

Extensions

Terms up to a(315) in b-file from Sean A. Irvine, Apr 20 2014
Terms a(316)-a(345) in b-file from Max Alekseyev, Apr 24 2019, Sep 10 2020, Aug 26 2021, Apr 25 2022
Showing 1-10 of 13 results. Next