cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A057935 Number of prime factors of 9^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 3, 4, 3, 4, 2, 4, 3, 4, 6, 4, 4, 6, 2, 4, 4, 4, 5, 7, 5, 4, 4, 8, 4, 5, 6, 4, 7, 5, 2, 6, 5, 9, 8, 5, 6, 7, 5, 5, 10, 7, 6, 9, 4, 4, 6, 9, 6, 8, 7, 6, 9, 8, 9, 9, 5, 3, 11, 6, 4, 11, 6, 8, 9, 9, 8, 6, 9, 5, 6, 6, 6, 13, 4, 8, 7, 5, 4, 7, 6, 5, 11, 8, 5, 8, 7, 4, 11, 7, 9, 9, 5, 9, 7, 5, 6, 10, 7, 6
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), this sequence (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(9^n + 1):n in [1..100]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[Table[9^n + 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

a(n) = A057952(2n) - A057952(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062396(n)) = A057941(2*n). - Amiram Eldar, Feb 02 2020

A274903 Largest prime factor of 4^n + 1.

Original entry on oeis.org

2, 5, 17, 13, 257, 41, 241, 113, 65537, 109, 61681, 2113, 673, 1613, 15790321, 1321, 6700417, 26317, 38737, 525313, 4278255361, 14449, 2931542417, 30269, 22253377, 268501, 308761441, 279073, 54410972897, 536903681, 4562284561, 384773, 67280421310721
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^3 + 1 = 65 = 5*13, so a(3) = 13.
		

Crossrefs

Cf. largest prime factor of k^n+1: A002587 (k=2), A074476 (k=3), this sequence (k=4), A074478 (k=5), A274904 (k=6), A227575 (k=7), A274905 (k=8), A002592 (k=9), A003021 (k=10), A062308 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n+1)): n in [0..35]];
    
  • Mathematica
    Table[FactorInteger[4^n + 1][[-1, 1]], {n, 0, 30}]
  • PARI
    a(n)=my(f=factor(4^n+1)[,1]); f[#f] \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = A006530(A052539(n)). - Michel Marcus, Jul 11 2016
a(2n) = A002590(n). a(2n+1) = A229747(n). - R. J. Mathar, Feb 28 2018
a(n) = A002587(2*n). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(531) in b-file from Amiram Eldar, Feb 01 2020
a(532)-a(583) in b-file from Max Alekseyev, Apr 25 2022, Mar 15 2025

A366579 a(n) = phi(3^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 4, 12, 40, 120, 288, 1092, 3072, 7776, 23600, 87120, 259200, 797160, 1847104, 5832000, 21523360, 63672480, 152845056, 580921200, 1700870400, 4368821184, 12550120000, 47071589412, 130459631616, 413939700000, 997562438080, 3012122557440, 11159367815680
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(3^n+1)}

Formula

a(n) = phi(3^n+1) = A000010(A034472(n)).

A366580 Number of distinct prime divisors of 3^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 2, 3, 4, 3, 3, 3, 2, 4, 5, 2, 4, 4, 3, 3, 5, 4, 2, 6, 4, 4, 6, 4, 4, 5, 3, 2, 6, 4, 4, 4, 4, 4, 7, 5, 3, 7, 2, 5, 9, 4, 4, 4, 4, 6, 8, 4, 3, 5, 6, 6, 7, 4, 3, 7, 3, 5, 11, 2, 4, 6, 3, 5, 8, 8, 6, 8, 3, 5, 11, 6, 5, 7, 4, 5, 11, 5, 5, 10, 8
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[3^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(3^n + 1), ", "))

Formula

a(n) = omega(3^n+1) = A001221(A034472(n)).

A366577 Number of divisors of 3^n+1.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 8, 6, 8, 24, 12, 12, 8, 6, 16, 48, 4, 24, 16, 12, 8, 72, 16, 6, 64, 24, 16, 96, 16, 24, 48, 12, 4, 96, 16, 24, 16, 24, 16, 192, 32, 12, 128, 6, 32, 768, 16, 24, 16, 24, 128, 384, 16, 12, 32, 96, 64, 192, 16, 12, 128, 12, 32, 4608, 4, 24, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=4 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,3^Range[0,100]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    a(n) = numdiv(3^n+1); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = sigma0(3^n+1) = A000005(A034472(n)).

A366578 Sum of the divisors of 3^n+1.

Original entry on oeis.org

3, 7, 18, 56, 126, 434, 1332, 3836, 10476, 42560, 109926, 315112, 816732, 2790074, 8906760, 30220288, 64570086, 229156928, 706911048, 2034690952, 5357742012, 21838961760, 56496274632, 164750562956, 456919958880, 1517043139136, 4661686010664, 16489453890560
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=126 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)

Formula

a(n) = sigma(3^n+1) = A000203(A034472(n)).

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023

A063271 Largest prime factor of 9^(2n)+1 (A063270).

Original entry on oeis.org

2, 41, 193, 6481, 21523361, 42521761, 769, 647753, 926510094425921, 282429005041, 128653413121, 56625998353, 24127552321, 37644053098601, 36214795668330833, 42521761, 1716841910146256242328924544641, 3833564416504313, 56227703611393, 278733912072436804273
Offset: 0

Views

Author

Jason Earls, Jul 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[9^(2n)+1][[-1,1]],{n,0,20}] (* Harvey P. Dale, Jan 07 2013 *)
  • PARI
    a(n)={vecmax(factor(9^(2*n) + 1)[,1])} \\ Harry J. Smith, Aug 20 2009

Formula

a(n) = A006530(A063270(n)) = A002592(2*n) = A074476(4*n). - Daniel Suteu, May 26 2022

Extensions

Definition corrected by Harry J. Smith, Aug 20 2009

A324941 Largest prime factor of 17^n + 1.

Original entry on oeis.org

2, 3, 29, 13, 41761, 101, 83233, 22796593, 184417, 5653, 63541, 87415373, 72337, 2001793, 100688449, 238212511, 52548582913, 45957792327018709121, 382069, 20352763, 1186844128302568601, 88109799136087, 6901823633, 1109309383381084655697725873, 48661191868691111041
Offset: 0

Views

Author

Vincenzo Librandi, Apr 05 2019

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(17^n + 1)): n in [0..40]];
    
  • Mathematica
    Table[FactorInteger[17^n + 1] [[-1,1]], {n, 0, 30}]
  • PARI
    a(n) = vecmax(factor(17^n+1)[, 1]); \\ Jinyuan Wang, Apr 05 2019

Formula

a(n) = A006530(A224384(n)).
Showing 1-9 of 9 results.