cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A052539 a(n) = 4^n + 1.

Original entry on oeis.org

2, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The sequence is a Lucas sequence V(P,Q) with P = 5 and Q = 4, so if n is a prime number, then V_n(5,4) - 5 is divisible by n. The smallest pseudoprime q which divides V_q(5,4) - 5 is 15.
Also the edge cover number of the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Sep 20 2017
First bisection of A000051, A049332, A052531 and A014551. - Klaus Purath, Sep 23 2020

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n+1); # G. C. Greubel, May 09 2019
  • Magma
    [4^n+1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
    
  • Maple
    spec := [S,{S=Union(Sequence(Union(Z,Z,Z,Z)),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
    A052539:=n->4^n + 1; seq(A052539(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
  • Mathematica
    Table[4^n + 1, {n, 0, 30}]
    (* From Eric W. Weisstein, Sep 20 2017 *)
    4^Range[0, 30] + 1
    LinearRecurrence[{5, -4}, {2, 5}, 30]
    CoefficientList[Series[(2-5x)/(1-5x+4x^2), {x, 0, 30}], x] (* End *)
  • PARI
    a(n)=4^n+1 \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    [4^n+1 for n in (0..30)] # G. C. Greubel, May 09 2019
    

Formula

a(n) = 4^n + 1.
a(n) = 4*a(n-1) - 3 = 5*a(n-1) - 4*a(n-2).
G.f.: (2 - 5*x)/((1 - 4*x)*(1 - x)).
E.g.f.: exp(x) + exp(4*x). - Mohammad K. Azarian, Jan 02 2009
From Klaus Purath, Sep 23 2020: (Start)
a(n) = 3*4^(n-1) + a(n-1).
a(n) = (a(n-1)^2 + 9*4^(n-2))/a(n-2).
a(n) = A178675(n) - 3. (End)

A002587 Largest prime factor of 2^n + 1.

Original entry on oeis.org

2, 3, 5, 3, 17, 11, 13, 43, 257, 19, 41, 683, 241, 2731, 113, 331, 65537, 43691, 109, 174763, 61681, 5419, 2113, 2796203, 673, 4051, 1613, 87211, 15790321, 3033169, 1321, 715827883, 6700417, 20857, 26317, 86171, 38737, 25781083, 525313
Offset: 0

Views

Author

Keywords

Comments

a(n) != 1 (mod n) for n = 3, 51, 141, 309, 321, 348, ... - Giovanni Resta & Thomas Ordowski, Jan 05 2014
a(n) != 1 (mod n) iff a(m) = a(n) for some m < n. Then n = 3m for m = 1, 17, 47, 103, 107, 116, ... - Thomas Ordowski, Jan 08 2014

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 85.
  • E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1 (1878), 184-239, 289-321.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A274903.

Programs

Formula

Charles proves that a(n) >> n^(4/3) infinitely often under the abc conjecture, and reports that Andrew Granville has improved this to a(n) >> n^2. - Charles R Greathouse IV, Apr 29 2013
a(n) = A006530(A000051(n)). - Vincenzo Librandi, Jul 12 2016

Extensions

More terms from James Sellers, Jul 06 2000
Offset 0, a(0) = 2 from Vincenzo Librandi, Jul 12 2016

A057940 Number of prime factors of 4^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 3, 5, 3, 7, 3, 6, 3, 3, 4, 5, 2, 6, 4, 7, 5, 5, 4, 10, 3, 5, 5, 5, 4, 11, 2, 4, 3, 6, 6, 9, 2, 4, 6, 7, 5, 8, 3, 7, 6, 6, 4, 10, 2, 10, 7, 6, 4, 8, 4, 6, 7, 5, 2, 14, 4, 9, 5, 4, 4, 10, 4, 6, 8, 11, 4, 8, 3, 4, 8, 11, 4, 9, 5, 10, 4, 9, 8, 12, 6
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), this sequence (b=4), A057941 (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057957(2n) - A057957(n). - T. D. Noe, Jun 19 2003
a(n) = Omega(4^n + 1) = A001222(A052539(n)). - Wesley Ivan Hurt, Jan 28 2014
a(n) = A054992(2*n). - Amiram Eldar, Feb 01 2020

A366608 a(n) = phi(4^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 16, 48, 256, 800, 3840, 12544, 65536, 186624, 986880, 3345408, 16515072, 52306176, 252645120, 760320000, 4288266240, 13628740608, 64258375680, 218462552064, 1095233372160, 3105655160832, 16510446886912, 56000724240384, 280012271910912, 869940000000000
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    {a(n) = eulerphi(4^n+1)}
    
  • Python
    from sympy import totient
    def A366608(n): return totient((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = A053285(2*n). - Max Alekseyev, Jan 08 2024

A274905 Largest prime factor of 8^n + 1.

Original entry on oeis.org

2, 3, 13, 19, 241, 331, 109, 5419, 673, 87211, 1321, 20857, 38737, 22366891, 14449, 18837001, 22253377, 43691, 279073, 160465489, 4562284561, 77158673929, 4327489, 168749965921, 487824887233, 1133836730401, 21841, 272010961, 88959882481, 96076791871613611
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Crossrefs

Cf. similar sequences listed in A274903.

Programs

  • Magma
    [Maximum(PrimeDivisors(8^n+1)): n in [0..40]];
  • Maple
    8^4 + 1 = 4097 = 17*241, so a(4) = 241.
  • Mathematica
    Table[FactorInteger[8^n + 1][[-1, 1]], {n, 0, 40}]

Formula

a(n) = A006530(A062395(n)). - Michel Marcus, Jul 11 2016
a(n) = A002587(3*n). - Amiram Eldar, Feb 02 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(354) in b-file from Amiram Eldar, Feb 02 2020
a(355)-a(502) in b-file from Max Alekseyev, May 28 2022, Sep 06 2022, Feb 25 2023

A366607 Sum of the divisors of 4^n+1.

Original entry on oeis.org

3, 6, 18, 84, 258, 1302, 4356, 20520, 65538, 351120, 1110276, 5048232, 17041416, 82623888, 284225796, 1494039792, 4301668356, 20788904016, 73234343952, 332019460560, 1103789883396, 5936210280000, 18679788287496, 84884999116320, 282937726148616
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=84 because 4^3+1 has divisors {1, 5, 13, 65}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](4^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • Python
    from sympy import divisor_sigma
    def A366607(n): return divisor_sigma((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = sigma(4^n+1) = A000203(A052539(n)).
a(n) = A069061(2*n). - Max Alekseyev, Jan 08 2024

A002592 Largest prime factor of 9^n + 1.

Original entry on oeis.org

2, 5, 41, 73, 193, 1181, 6481, 16493, 21523361, 530713, 42521761, 570461, 769, 4795973261, 647753, 47763361, 926510094425921, 1743831169, 282429005041, 25480398173, 128653413121, 109688713, 56625998353, 70601370627701
Offset: 0

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 89.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A274903.

Programs

  • Magma
    [Maximum(PrimeDivisors(9^n+1)): n in [0..40]]; // Vincenzo Librandi, Jul 12 2016
  • Maple
    for n from 0 to 30 do t1:=ifactor(9^n+1); od;
  • Mathematica
    Table[FactorInteger[9^n + 1][[-1, 1]], {n, 0, 10}] (* Vincenzo Librandi, Jul 12 2016 *)

Formula

a(n) = A006530(A062396(n)). - Vincenzo Librandi, Jul 12 2016
a(n) = A074476(2*n). - Max Alekseyev, Apr 25 2022

Extensions

Terms up to a(315) in b-file from Sean A. Irvine, Apr 20 2014
Terms a(316)-a(345) in b-file from Max Alekseyev, Apr 24 2019, Sep 10 2020, Aug 26 2021, Apr 25 2022

A366605 Number of distinct prime divisors of 4^n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 3, 4, 2, 5, 2, 4, 4, 4, 2, 6, 3, 5, 3, 5, 3, 6, 3, 3, 4, 5, 2, 6, 3, 6, 5, 5, 4, 9, 3, 5, 5, 5, 4, 10, 2, 4, 3, 6, 6, 9, 2, 4, 6, 6, 5, 8, 3, 7, 6, 6, 4, 10, 2, 9, 7, 6, 4, 8, 4, 6, 7, 5, 2, 12, 4, 9, 5, 4, 4, 10, 4, 6, 8, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[4^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(4^n + 1), ", "))
    
  • Python
    from sympy import primenu
    def A366605(n): return primenu((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = omega(4^n+1) = A001221(A052539(n)).
a(n) = A046799(2*n). - Max Alekseyev, Jan 08 2024

A366606 Number of divisors of 4^n+1.

Original entry on oeis.org

2, 2, 2, 4, 2, 6, 4, 8, 2, 16, 4, 8, 8, 16, 4, 48, 4, 16, 16, 16, 4, 64, 8, 32, 8, 64, 8, 64, 8, 8, 16, 32, 4, 64, 12, 96, 32, 32, 16, 768, 8, 32, 32, 32, 16, 1536, 4, 16, 8, 64, 64, 512, 4, 16, 64, 96, 32, 256, 8, 128, 64, 64, 16, 1024, 4, 768, 128, 64, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=4 because 4^3+1 has divisors {1, 5, 13, 65}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](4^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,4^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    a(n) = numdiv(4^n+1);
    
  • Python
    from sympy import divisor_count
    def A366606(n): return divisor_count((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = sigma0(4^n+1) = A000005(A052539(n)).
a(n) = A046798(2*n). - Max Alekseyev, Jan 08 2024

A366609 Smallest prime dividing 4^n + 1.

Original entry on oeis.org

2, 5, 17, 5, 257, 5, 17, 5, 65537, 5, 17, 5, 97, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 193, 5, 17, 5, 257, 5, 17, 5, 274177, 5, 17, 5, 97, 5, 17, 5, 65537, 5, 17, 5, 257, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 449, 5, 17, 5, 97, 5, 17, 5, 59649589127497217
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Showing 1-10 of 15 results. Next