cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A057936 Number of prime factors of 8^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 4, 2, 4, 4, 4, 3, 6, 6, 5, 4, 4, 6, 7, 3, 6, 6, 5, 4, 7, 6, 5, 5, 7, 10, 10, 5, 5, 11, 5, 3, 9, 9, 11, 6, 7, 8, 7, 6, 7, 10, 6, 7, 12, 8, 7, 7, 7, 14, 11, 5, 6, 10, 12, 8, 9, 8, 8, 8, 4, 9, 13, 4, 11, 12, 8, 9, 8, 15, 8, 8, 6, 10, 12, 8, 12, 17, 6, 7, 15, 10, 9, 12, 12, 10, 11, 8, 8, 18, 12
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), this sequence (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(8^n + 1):n in [1..110]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[8^Range[100]+1] (* Harvey P. Dale, Dec 16 2014 *)

Formula

a(n) = A057953(2n) - A057953(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062395(n)) = A054992(3*n). - Amiram Eldar, Feb 02 2020

A274903 Largest prime factor of 4^n + 1.

Original entry on oeis.org

2, 5, 17, 13, 257, 41, 241, 113, 65537, 109, 61681, 2113, 673, 1613, 15790321, 1321, 6700417, 26317, 38737, 525313, 4278255361, 14449, 2931542417, 30269, 22253377, 268501, 308761441, 279073, 54410972897, 536903681, 4562284561, 384773, 67280421310721
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^3 + 1 = 65 = 5*13, so a(3) = 13.
		

Crossrefs

Cf. largest prime factor of k^n+1: A002587 (k=2), A074476 (k=3), this sequence (k=4), A074478 (k=5), A274904 (k=6), A227575 (k=7), A274905 (k=8), A002592 (k=9), A003021 (k=10), A062308 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n+1)): n in [0..35]];
    
  • Mathematica
    Table[FactorInteger[4^n + 1][[-1, 1]], {n, 0, 30}]
  • PARI
    a(n)=my(f=factor(4^n+1)[,1]); f[#f] \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = A006530(A052539(n)). - Michel Marcus, Jul 11 2016
a(2n) = A002590(n). a(2n+1) = A229747(n). - R. J. Mathar, Feb 28 2018
a(n) = A002587(2*n). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(531) in b-file from Amiram Eldar, Feb 01 2020
a(532)-a(583) in b-file from Max Alekseyev, Apr 25 2022, Mar 15 2025

A366655 Number of distinct prime divisors of 8^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 3, 3, 5, 4, 4, 3, 6, 5, 3, 5, 6, 4, 4, 5, 6, 4, 5, 6, 9, 6, 5, 4, 10, 4, 3, 7, 9, 10, 6, 6, 8, 5, 6, 6, 10, 5, 7, 9, 8, 6, 7, 6, 12, 9, 5, 5, 10, 10, 8, 6, 8, 7, 8, 3, 9, 10, 4, 10, 12, 7, 8, 6, 14, 7, 8, 5, 10, 10, 8, 11, 16, 5, 7, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 0, 100, print1(omega(8^n + 1), ", "))

Formula

a(n) = omega(8^n+1) = A001221(A062395(n)).
a(n) = A046799(3*n). - Max Alekseyev, Jan 09 2024

A366658 a(n) = phi(8^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 48, 324, 3840, 19800, 186624, 1365336, 16515072, 84768120, 760320000, 5632621632, 64258375680, 366369658200, 3105655160832, 20140520400000, 280012271910912, 1495522910085120, 12824556668190720, 95907982079387520, 1080582572777472000, 5688765822212629632
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[8^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(8^n+1)}
    
  • Python
    from sympy import totient
    def A366658(n): return totient((1<<3*n)+1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A000010(A062395(n)). - Paul F. Marrero Romero, Nov 06 2023
a(n) = A053285(3*n). - Max Alekseyev, Jan 09 2024

A366656 Number of divisors of 8^n+1.

Original entry on oeis.org

2, 3, 4, 8, 4, 12, 16, 12, 8, 20, 48, 24, 16, 12, 64, 64, 8, 48, 64, 24, 16, 64, 64, 24, 32, 96, 768, 192, 32, 24, 1536, 24, 8, 256, 512, 1536, 64, 96, 256, 64, 64, 96, 1024, 48, 128, 1280, 256, 96, 128, 96, 8192, 1024, 32, 48, 1024, 2304, 256, 192, 256, 192
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=4 because 8^4+1 has divisors {1, 17, 241, 4097}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](8^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 8^Range[0,59] + 1] (* Paul F. Marrero Romero, Nov 12 2023 *)
  • PARI
    a(n) = numdiv(8^n+1);

Formula

a(n) = sigma0(8^n+1) = A000005(A062395(n)).
a(n) = A046798(3*n). - Max Alekseyev, Jan 09 2024

A366657 Sum of the divisors of 8^n+1.

Original entry on oeis.org

3, 13, 84, 800, 4356, 51792, 351120, 3100240, 17041416, 211053040, 1494039792, 12611914848, 73234343952, 794382536272, 5936210280000, 60037292774400, 282937726148616, 3264911394064320, 24128875076496960, 208532141890460960, 1225825603154905104
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=4356 because 8^4+1 has divisors {1, 17, 241, 4097}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](8^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 8^Range[0,20]+1] (* Paul F. Marrero Romero, Nov 19 2023 *)

Formula

a(n) = sigma(8^n+1) = A000203(A062395(n)).
a(n) = A069061(3*n). - Max Alekseyev, Jan 09 2024

A274908 Largest prime factor of 8^n - 1.

Original entry on oeis.org

7, 7, 73, 13, 151, 73, 337, 241, 262657, 331, 599479, 109, 121369, 5419, 23311, 673, 131071, 262657, 1212847, 1321, 649657, 599479, 10052678938039, 38737, 10567201, 22366891, 97685839, 14449, 9857737155463, 18837001, 658812288653553079, 22253377
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			8^5 -1 = 32767 = 7*31*151, so a(5) = 151.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(8^n-1)): n in [1..40]];
  • Maple
    f:= n -> max(map(t -> max(numtheory:-factorset(subs(x=2,t[1]))), factors(x^(3*n)-1)[2])):
    map(f, [$1..120]); # Robert Israel, Jul 12 2016
  • Mathematica
    Table[FactorInteger[8^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024088(n)). - Michel Marcus, Jul 11 2016
a(n) = A005420(3*n). - Robert Israel, Jul 12 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(402) in b-file from Amiram Eldar, Feb 02 2020
a(403)-a(500) in b-file from Max Alekseyev, Apr 25 2022, Sep 11 2022, Dec 05 2022, Feb 25 2023

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023

A366671 Smallest prime dividing 8^n + 1.

Original entry on oeis.org

2, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 641, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 769, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Comments

a(n) = 3 if n is odd. a(n) = 5 if n == 2 (mod 4). - Robert Israel, Nov 20 2023

Crossrefs

Programs

  • Maple
    P1000:= mul(ithprime(i),i= 4..1000):
    f:= proc(n) local t;
      if n::odd then return 3 elif n mod 4 = 2 then return 5 fi;
      t:= igcd(8^n+1,P1000);
      if t <> 1 then min(numtheory:-factorset(t)) else min(numtheory:-factorset(8^n+1)) fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Nov 20 2023
  • Mathematica
    Table[FactorInteger[8^n + 1][[1,1]], {n, 0, 78}] (* Paul F. Marrero Romero, Oct 20 2023 *)
  • Python
    from sympy import primefactors
    def A366671(n): return min(primefactors((1<<3*n)+1)) # Chai Wah Wu, Oct 16 2023

Formula

a(n) = A020639(A062395(n)). - Paul F. Marrero Romero, Oct 20 2023
a(n) = A002586(3*n) for n >= 1. - Robert Israel, Nov 20 2023

A324941 Largest prime factor of 17^n + 1.

Original entry on oeis.org

2, 3, 29, 13, 41761, 101, 83233, 22796593, 184417, 5653, 63541, 87415373, 72337, 2001793, 100688449, 238212511, 52548582913, 45957792327018709121, 382069, 20352763, 1186844128302568601, 88109799136087, 6901823633, 1109309383381084655697725873, 48661191868691111041
Offset: 0

Views

Author

Vincenzo Librandi, Apr 05 2019

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(17^n + 1)): n in [0..40]];
    
  • Mathematica
    Table[FactorInteger[17^n + 1] [[-1,1]], {n, 0, 30}]
  • PARI
    a(n) = vecmax(factor(17^n+1)[, 1]); \\ Jinyuan Wang, Apr 05 2019

Formula

a(n) = A006530(A224384(n)).
Showing 1-10 of 10 results.