cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A359063 Integers k such that A005420(k) = A005420(2*k) = A005420(4*k) where A005420(k) is the largest prime factor of 2^k-1.

Original entry on oeis.org

7, 13, 17, 31, 37, 59, 61, 65, 77, 83, 89, 97, 107, 127, 129, 131, 133, 145, 153, 165, 169, 179, 195, 197, 201, 221, 227, 235, 245, 249, 261, 269, 281, 293, 297, 303, 321, 325, 345, 369, 373, 381, 393, 399, 405, 409, 417, 421, 425, 427, 442, 443, 447, 455, 465
Offset: 1

Views

Author

Michel Marcus, Dec 15 2022

Keywords

Comments

Inspired by former comment from Thomas Ordowski in A005420.

Crossrefs

Cf. A005420.

Programs

  • Mathematica
    Block[{s, nn}, nn = 50; s = Map[FactorInteger[#][[-1, 1]] &, 2^Range[4 nn] - 1]; Select[Range[nn], s[[#]] == s[[2 #]] == s[[4 #]] &]] (* Michael De Vlieger, Dec 15 2022 *)
  • PARI
    f(n) = vecmax(factor(2^n-1)[,1]); \\ A005420
    isok(n) = my(x=f(2*n)); (f(n) == x) && (f(4*n) == x);

Extensions

a(36)-a(55) from Amiram Eldar, Dec 15 2022

A048857 A005420 prefixed with a 0.

Original entry on oeis.org

0, 3, 7, 5, 31, 7, 127, 17, 73, 31, 89, 13, 8191, 127, 151, 257, 131071, 73, 524287, 41
Offset: 1

Views

Author

Keywords

A128997 indices k such that A063670(k) differs from A005420(k).

Original entry on oeis.org

11, 12, 15, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

M. F. Hasler, Apr 30 2007

Keywords

Comments

Primes in this sequence are those for which A005420(n) < 2^n-1, i.e. 2^n-1 is not prime.

Crossrefs

Programs

A002326 Multiplicative order of 2 mod 2n+1.

Original entry on oeis.org

1, 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 28, 5, 10, 12, 36, 12, 20, 14, 12, 23, 21, 8, 52, 20, 18, 58, 60, 6, 12, 66, 22, 35, 9, 20, 30, 39, 54, 82, 8, 28, 11, 12, 10, 36, 48, 30, 100, 51, 12, 106, 36, 36, 28, 44, 12, 24, 110, 20, 100, 7, 14, 130, 18, 36, 68, 138, 46, 60, 28
Offset: 0

Views

Author

Keywords

Comments

In other words, least m > 0 such that 2n+1 divides 2^m-1.
Number of riffle shuffles of 2n+2 cards required to return a deck to initial state. A riffle shuffle replaces a list s(1), s(2), ..., s(m) with s(1), s((i/2)+1), s(2), s((i/2)+2), ... a(1) = 2 because a riffle shuffle of [1, 2, 3, 4] requires 2 iterations [1, 2, 3, 4] -> [1, 3, 2, 4] -> [1, 2, 3, 4] to restore the original order.
Concerning the complexity of computing this sequence, see for example Bach and Shallit, p. 115, exercise 8.
It is not difficult to prove that if 2n+1 is a prime then 2n is a multiple of a(n). But the converse is not true. Indeed, one can prove that a(2^(2t-1))=4t. Thus if n=2^(2t-1), where, for any m > 0, t=2^(m-1) then 2n is a multiple of a(n) while 2n+1 is a Fermat number which, as is well known, is not always a prime. It is an interesting problem to describe all composite numbers for which 2n is divisible by a(n). - Vladimir Shevelev, May 09 2008
For an algorithm of calculation of a(n) see author's comment in A179680. - Vladimir Shevelev, Jul 21 2010
From V. Raman, Sep 18 2012, Dec 10 2012: (Start)
If 2n+1 is prime, then the polynomial (x^(2n+1)+1)/(x+1) factors into 2n/a(n) polynomials of the same degree a(n) over GF(2).
If (x^(2n+1)+1)/(x+1) is irreducible over GF(2), then 2n+1 is prime, and 2 is a primitive root (mod 2n+1) (cf. A001122).
For all n > 0, a(n) is the degree of the largest irreducible polynomial factor for the polynomial (x^(2n+1)+1)/(x+1) over GF(2). (End)
a(n) is a factor of phi(2n+1) (A000010(2n+1)). - Douglas Boffey, Oct 21 2013
Conjecture: if p is an odd prime then a((p^3-1)/2) = p * a((p^2-1)/2). Because otherwise a((p^3-1)/2) < p * a((p^2-1)/2) iff a((p^3-1)/2) = a((p-1)/2) for a prime p. Equivalently p^3 divides 2^(p-1)-1, but no such prime p is known. - Thomas Ordowski, Feb 10 2014
A generalization of the previous conjecture: For each k>=2, if p is an odd prime then a(((p^(k+1))-1)/2) = p * a((p^k-1)/2). Computer testing of this generalized conjecture shows that there is no counterexample for k and p both up to 1000. - Ahmad J. Masad, Oct 17 2020

Examples

			From _Vladimir Shevelev_, Oct 03 2017: (Start)
Our algorithm for the calculation of a(n) in the author's comment in A179680 (see also the Sage program below) could be represented in the form of a "finite continued fraction". For example let n = 8, 2*n+1 = 17. We have
    1 + 17
    ------- + 17
       2
    ------------- + 17
           2
    ------------------- + 17
              2
    -------------------------- = 1
                 32
Here the denominators are the A006519 of the numerators: A006519(1+17) = 2, A006519(9+17) = 2, A006519(13+17) = 2, A006519(15+17) = 32. Summing the exponents of these powers of 2, we obtain the required result: a(8) = 1 + 1 + 1 + 5 = 8. Indeed, we have (((1*32 - 17)*2 - 17)*2 - 17)*2 - 17 = 1. So 32*2*2*2 - 1 == 0 (mod 17), 2^8 - 1 == 0 (mod 17). In the general case, note that all "partial fractions" (which indeed are integers) are odd residues modulo 2*n+1 in the interval [1, 2*n-1]. It is easy to prove that the first 1 appears not later than in the n-th step. (End)
		

References

  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I.
  • T. Folger, "Shuffling Into Hyperspace," Discover, 1991 (vol 12, no 1), pages 66-67.
  • M. Gardner, "Card Shuffles," Mathematical Carnival chapter 10, pages 123-138. New York: Vintage Books, 1977.
  • L. Lunelli and M. Lunelli, Tavola di congruenza a^n == 1 mod K per a=2,5,10, Atti Sem. Mat. Fis. Univ. Modena 10 (1960/61), 219-236 (1961).
  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 146, Exer. 21.3
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A024222, A006694 (number of cyclotomic cosets).
Cf. A014664 (order of 2 mod n-th prime).
Cf. A001122 (primes for which 2 is a primitive root).
Cf. A216838 (primes for which 2 is not a primitive root).
Bisections give A274298, A274299.
Partial sums: A359147.

Programs

  • GAP
    List([0..100],n->OrderMod(2,2*n+1)); # Muniru A Asiru, Feb 01 2019
    
  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a002326 n = (+ 1) $ fromJust $
                findIndex ((== 0) . (`mod` (2 * n + 1))) $ tail a000225_list
    -- Reinhard Zumkeller, Apr 22 2013
    
  • Magma
    [ 1 ] cat [ Modorder(2, 2*n+1): n in [1..72] ]; // Klaus Brockhaus, Dec 03 2008
    
  • Maple
    a := n -> `if`(n=0, 1, numtheory:-order(2, 2*n+1)):
    seq(a(n), n=0..72);
  • Mathematica
    Table[MultiplicativeOrder[2, 2*n + 1], {n, 0, 100}] (* Robert G. Wilson v, Apr 05 2011 *)
  • PARI
    a(n)=if(n<0,0,znorder(Mod(2,2*n+1))) /* Michael Somos, Mar 31 2005 */
    
  • Python
    from sympy import n_order
    [n_order(2, 2*n+1) for n in range(73)] # Hermann Stamm-Wilbrandt, Jul 27 2021
  • Sage
    # From Peter Luschny, Oct 06 2017: (Start)
    [Mod(2,n).multiplicative_order() for n in (0..145) if gcd(n,2) == 1]
    # Algorithm from Vladimir Shevelev as described in A179680 and presented in Example.
    def A002326VS(n):
        s, m, N = 0, 1, 2*n + 1
        while True:
            k = N + m
            v = valuation(k, 2)
            s += v
            m = k >> v
            if m == 1: break
        return s
    [A002326VS(n) for n in (0..72)] # (End)
    

Formula

a((3^n-1)/2) = A025192(n). - Vladimir Shevelev, May 09 2008
Bisection of A007733: a(n) = A007733(2*n+1). - Max Alekseyev, Jun 11 2009
a((b(n)-1)/2) = n for odd n and even n such that b(n/2) != b(n), where b(n) = A005420(n). - Thomas Ordowski, Jan 11 2014
Note that a(2^n-1) = n+1 and a(2^n) = 2*(n+1). - Thomas Ordowski, Jan 16 2014
a(n) = A056239(A292239(n)) = A048675(A292265(n)). - Antti Karttunen, Oct 04 2017

Extensions

More terms from David W. Wilson, Jan 13 2000
More terms from Benoit Cloitre, Apr 11 2003

A002034 Kempner numbers: smallest positive integer m such that n divides m!.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5, 7, 11, 23, 4, 10, 13, 9, 7, 29, 5, 31, 8, 11, 17, 7, 6, 37, 19, 13, 5, 41, 7, 43, 11, 6, 23, 47, 6, 14, 10, 17, 13, 53, 9, 11, 7, 19, 29, 59, 5, 61, 31, 7, 8, 13, 11, 67, 17, 23, 7, 71, 6, 73, 37, 10, 19, 11, 13, 79, 6, 9, 41, 83, 7
Offset: 1

Views

Author

Keywords

Comments

Sometimes named after Florentin Smarandache, although studied 60 years earlier by Aubrey Kempner and 35 years before that by Lucas.
Kempner originally defined a(1) to be 0, and there are good reasons to prefer that (see Hungerbühler and Specker), but we shall stay with the by-now traditional value a(1) = 1. - N. J. A. Sloane, Jan 02 2021
Kempner gave an algorithm to compute a(n) from the prime factorization of n. Partial solutions were given earlier by Lucas in 1883 and Neuberg in 1887. - Jonathan Sondow, Dec 23 2004
a(n) is the degree of lowest degree monic polynomial over Z that vanishes identically on the integers mod n [Newman].
Smallest k such that n divides product of k consecutive integers starting with n + 1. - Amarnath Murthy, Oct 26 2002
If m and n are any integers with n > 1, then |e - m/n| > 1/(a(n) + 1)! (see Sondow 2006).
Degree of minimal linear recurrence satisfied by Bell numbers (A000110) read modulo n. [Lunnon et al.] - N. J. A. Sloane, Feb 07 2009

Examples

			1! = 1, but clearly 8 does not divide 1.
2! = 2, but 8 does not divide 2.
3! = 6, but 8 does not divide 6.
4! = 24, and 8 does divide 24. Hence a(8) = 4.
However, 9 does not divide 24.
5! = 120, but 9 does not divide 120.
6! = 720, and 9 does divide 720. Hence a(9) = 6.
		

References

  • E. Lucas, Question Nr. 288, Mathesis 3 (1883), 232.
  • R. Muller, Unsolved problems related to Smarandache Function, Number Theory Publishing Company, Phoenix, AZ, ISBN 1-879585-37-5, 1993.
  • J. Neuberg, Solutions des questions proposées, Question Nr. 288, Mathesis 7 (1887), 68-69.
  • Donald J. Newman, A Problem Seminar. Problem 17, Springer-Verlag, 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Florentin Smarandache, A Function in the Number Theory, Analele Univ. Timisoara, Fascicle 1, Vol. XVIII, 1980, pp. 79-88; Smarandache Function J., Vol. 1, No. 1-3 (1990), pp. 3-17.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 2.5.18 on page 77.

Crossrefs

Cf. A000142, A001113, A006530, A007672, A046022, A057109, A064759, A084945, A094371, A094372, A094404, A122378, A122379, A122416, A122417, A248937 (Fermi-Dirac analog: use unique representation of n > 1 as a product of distinct terms of A050376).
See A339594-A339596 for higher-dimensional generalizations.

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a002034 1 = 1
    a002034 n = fromJust (a092495 n `elemIndex` a000142_list)
    -- Reinhard Zumkeller, Aug 24 2011
    
  • Maple
    a:=proc(n) local b: b:=proc(m) if type(m!/n, integer) then m else fi end: [seq(b(m),m=1..100)][1]: end: seq(a(n),n=1..84); # Emeric Deutsch, Aug 01 2005
    g:= proc(p,u)
      local i,t;
      t:= 0;
      for i from 1 while t < u do
        t:= t + 1 + padic[ordp](i,p);
      od;
      p*(i-1)
    end;
    A002034:= x -> max(map(g@op, ifactors(x)[2])); # Robert Israel, Apr 20 2014
  • Mathematica
    Do[m = 1; While[ !IntegerQ[m!/n], m++ ]; Print[m], {n, 85}] (* or for larger n's *)
    Kempner[1] := 1; Kempner[n_] := Max[Kempner @@@ FactorInteger[n]]; Kempner[p_, 1] := p; Kempner[p_, alpha_] := Kempner[p, alpha] = Module[{a, k, r, i, nu, k0 = alpha(p - 1)}, i = nu = Floor[Log[p, 1 + k0]]; a[1] = 1; a[n_] := (p^n - 1)/(p - 1); k[nu] = Quotient[alpha, a[nu]]; r[nu] = alpha - k[nu]a[nu]; While[r[i] > 0, k[i - 1] = Quotient[r[i], a[i - 1]]; r[i - 1] = r[i] - k[i - 1]a[i - 1]; i-- ]; k0 + Plus @@ k /@ Range[i, nu]]; Table[ Kempner[n], {n, 85}] (* Eric W. Weisstein, based on a formula of Kempner's, May 17 2004 *)
    With[{facts = Range[100]!}, Flatten[Table[Position[facts, ?(Divisible[#, n] &), {1}, 1], {n, 90}]]] (* _Harvey P. Dale, May 24 2013 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(s!%n>0,s++); s)
    
  • PARI
    a(n)=my(s=factor(n)[,1],k=s[#s],f=Mod(k!,n));while(f, f*=k++); k \\ Charles R Greathouse IV, Feb 28 2012
    
  • PARI
    valp(n,p)=my(s);while(n\=p,s+=n);s
    K(p,e)=if(e<=p,return(e*p));my(t=e*(p-1)\p*p);while(valp(t+=p,p)Charles R Greathouse IV, Jul 30 2013
    
  • Python
    from sympy import factorial
    def a(n):
        m=1
        while True:
            if factorial(m)%n==0: return m
            else: m+=1
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Apr 24 2017
    
  • Python
    from sympy import factorint
    def valp(n, p):
        s = 0
        while n: n //= p; s += n
        return s
    def K(p, e):
        if e <= p: return e*p
        t = e*(p-1)//p*p
        while valp(t, p) < e: t += p
        return t
    def A002034(n):
        return 1 if n == 1 else max(K(p, e) for p, e in factorint(n).items())
    print([A002034(n) for n in range(1, 85)]) # Michael S. Branicky, Jun 09 2022 after Charles R Greathouse IV

Formula

A000142(a(n)) = A092495(n). - Reinhard Zumkeller, Aug 24 2011
From Joerg Arndt, Jul 14 2012: (Start)
The following identities were given by Kempner (1918):
a(1) = 1.
a(n!) = n.
a(p) = p for p prime.
a(p1 * p2 * ... * pu) = pu if p1 < p2 < ... < pu are distinct primes.
a(p^k) = p * k for p prime and k <= p.
Let n = p1^e1 * p2^e2 * ... * pu^eu be the canonical factorization of n, then a(n) = max( a(p1^e1), a(p2^e2), ..., a(pu^eu) ).
(End)
Clearly a(n) >= P(n), the largest prime factor of n (= A006530). a(n) = P(n) for almost all n (Erdős and Kastanas 1994, Ivic 2004). The exceptions are A057109. a(n) = P(n) if and only if a(n) is prime because if a(n) > P(n) and a(n) were prime, then since n divides a(n)!, n would also divide (a(n)-1)!, contradicting minimality of a(n). - Jonathan Sondow, Jan 10 2005
If p is prime then a(p^k) = k*p for 0 <= k <= p. Hence it appears also that if n = 2^m * p(1)^e(1) * ... * p(r)^e(r) and if there exists b, 1 <= b <= r, such that Max(2 * m + 2, p(i) * e(i), 1 <= i <= r) = p(b) * e(b) with e(b) <= p(b) then a(n) = e(b) * p(b). E.g.: a(2145986896455317997802121296896) = a(2^10 * 3^3 * 7^9 * 11^9 * 13^8) = 13 * 8 = 104, since 8 * 13 = Max (2 * 10 + 2, 3 * 3, 7 * 9, 11 * 9, 13 * 8) and 8 <= 13. - Benoit Cloitre, Sep 01 2002
It appears that a(2^m - 1) is the largest prime factor of 2^m - 1 (A005420).
a(n!) = n for all n > 0 and a(p) = p if p is prime. - Jonathan Sondow, Dec 23 2004
Conjecture: a(n) = 1 + n - Sum_{k=1..n} Sum_{m=1..n} cos(-2*Pi*k/n*m!)/n. Formula verified for the first 500 terms. - Mats Granvik, Feb 26 2021
Limit_{n->oo} (1/n) * Sum_{k=2..n} log(a(k))/log(k) = A084945 (Finch, 1999). - Amiram Eldar, Jul 04 2021

Extensions

Error in 45th term corrected by David W. Wilson, May 15 1997

A049479 Smallest prime dividing 2^n - 1.

Original entry on oeis.org

3, 7, 3, 31, 3, 127, 3, 7, 3, 23, 3, 8191, 3, 7, 3, 131071, 3, 524287, 3, 7, 3, 47, 3, 31, 3, 7, 3, 233, 3, 2147483647, 3, 7, 3, 31, 3, 223, 3, 7, 3, 13367, 3, 431, 3, 7, 3, 2351, 3, 127, 3, 7, 3, 6361, 3, 23, 3, 7, 3, 179951, 3, 2305843009213693951, 3, 7, 3, 31
Offset: 2

Views

Author

Keywords

Comments

If p is prime then a(p) == 1 (mod p). Are there composite numbers k such that a(k) == 1 (mod k)? - Thomas Ordowski, Jan 27 2014
Yes, up to 1200, the following composites have the desired property: 169, 221, 323, 611, 779, 793, 923, 1121, 1159. - Michel Marcus, Jan 28 2014
a(n) <= a(lpf(n)) for every n, where lpf(n) = A020639(n). For which n is a(n) < a(lpf(n))? See A236769. - Thomas Ordowski, Jan 30 2014

Examples

			a(6)=3 since 2^6 - 1 = 63 = 3^2*7.
		

Crossrefs

Cf. A005420.

Programs

  • Mathematica
    a = {}; Do[w = 2^n - 1; c = FactorInteger[w]; b = c[[1]][[1]]; AppendTo[a, b], {n, 2, 65}]; a (* Artur Jasinski, Dec 11 2007 *)
    FactorInteger[#][[1,1]]&/@(2^Range[2,70]-1) (* Harvey P. Dale, Nov 18 2019 *)
  • Python
    from sympy import factorint
    def A049479(n):
        return min(factorint(2**n-1)) # Chai Wah Wu, Jun 03 2019

Formula

a(n) > lpf(n) while a(2k) = 3 and a(2k+1) > 2*lpf(2k+1), where lpf(m) = A020639(m). - Thomas Ordowski, Jan 29 2014
For k >= 1, a(2k) = 3, a(6k-3)=7. - Zak Seidov, Mar 21 2014

Extensions

More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
Terms to a(500) in b-file from T. D. Noe, Dec 06 2006
a(501)-a(1060) in b-file from Michel Marcus, Sep 15 2017
a(1061)-a(1236) in b-file added at the suggestion of Eric Chen by Max Alekseyev, Apr 25 2022

A274906 Largest prime factor of 4^n - 1.

Original entry on oeis.org

3, 5, 7, 17, 31, 13, 127, 257, 73, 41, 683, 241, 8191, 127, 331, 65537, 131071, 109, 524287, 61681, 5419, 2113, 2796203, 673, 4051, 8191, 262657, 15790321, 3033169, 1321, 2147483647, 6700417, 599479, 131071, 122921, 38737, 616318177, 525313, 22366891
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^7 - 1 = 16383 = 3*43*127, so a(7) = 127
		

Crossrefs

Second bisection of A005420. - Michel Marcus, Jul 13 2016
Cf. largest prime factor of k^n-1: A005420 (k=2), A074477 (k=3), this sequence (k=4), A074479 (k=5), A274907 (k=6), A074249 (k=7), A274908 (k=8), A274909 (k=9), A005422 (k=10), A274910 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[4^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024036(n)). - Michel Marcus, Jul 11 2016
a(n) = max(A002587(n),A005420(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(603) in b-file from Amiram Eldar, Feb 08 2020
a(604)-a(1128) in b-file from Max Alekseyev, Jul 25 2023, Mar 15 2025

A237043 Numbers n such that 2^n - 1 is not squarefree, but 2^d - 1 is squarefree for every proper divisor d of n.

Original entry on oeis.org

6, 20, 21, 110, 136, 155, 253, 364, 602, 657, 812, 889, 979, 1081
Offset: 1

Views

Author

Keywords

Comments

Primitive elements of A049094: the elements of A049094 are precisely the positive multiples of members of this sequence.
If p^2 divides 2^n - 1 for some odd prime p, then by definition the multiplicative order of 2 mod p^2 divides n. The multiplicative order of 2 mod p^2 is p times the multiplicative order of 2 mod p unless p is a Wieferich prime, in which case the two orders are identical. Hence either p is a Wieferich prime or p*log_2(p+1) <= n. This should allow finding larger members of this sequence. - Charles R Greathouse IV, Feb 04 2014
If n is in the sequence and m>1 then m*n is not in the sequence. Because n is a proper divisor of m*n and 2^n-1 is not squarefree. - Farideh Firoozbakht, Feb 11 2014
a(15) >= 1207. - Max Alekseyev, Sep 28 2015
From Daniel Suteu, Jul 03 2019: (Start)
The following numbers are also in the sequence: {1755, 2265, 2485, 2756, 3081, 3164, 4112, 6757, 8251, 13861, 18533}.
Probably, the following numbers are also terms: {3422, 5253, 6806, 8164, 9316, 11342, 12550, 15025, 15026, 17030, 17404, 17468, 18145, 19670, 19701, 22052}. (End)

Crossrefs

Programs

  • Mathematica
    Select[Range@ 160, And[AllTrue[2^#2 - 1, SquareFreeQ], ! SquareFreeQ[2^First@ #1 - 1]] & @@ TakeDrop[Divisors@ #, -1] &] (* Michael De Vlieger, Jul 07 2019 *)
  • PARI
    default(factor_add_primes, 1);
    isA049094(n)=my(f=factor(n>>valuation(n, 2))[, 1], N, o); for(i=1, #f, if(n%(f[i]-1) == 0, return(1))); N=2^n-1; fordiv(n, d, f=factor(2^d-1)[, 1]; for(i=1, #f, if(d==n, return(!issquarefree(N))); o=valuation(N, f[i]); if(o>1, return(1)); N/=f[i]^o))
    is(n)=fordiv(n,d,if(isA049094(d),return(d==n))); 0
    
  • PARI
    \\ Simpler but slow
    is(n)=fordiv(n,d,if(!issquarefree(2^d-1),return(d==n))); 0

Extensions

a(14) from Charles R Greathouse IV, Sep 21 2015, following Womack's factorization of 2^991-1.

A074477 Largest prime factor of 3^n - 1.

Original entry on oeis.org

2, 2, 13, 5, 11, 13, 1093, 41, 757, 61, 3851, 73, 797161, 1093, 4561, 193, 34511, 757, 363889, 1181, 368089, 3851, 1001523179, 6481, 391151, 797161, 8209, 16493, 20381027, 4561, 4404047, 21523361, 2413941289, 34511, 2664097031, 530713
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			3^7 - 1 = 2186 = 2*1093, so a(7) = 1093.
		

Crossrefs

Cf. A006530 (largest prime factor), A024023 (3^n-1).
Cf. A074476 (largest prime factor of 3^n + 1), A005420 (largest prime factor of 2^n - 1), A074479 (largest prime factor of 5^n - 1).

Programs

  • Magma
    [Maximum(PrimeDivisors(3^n-1)): n in [1..40]]; // Vincenzo Librandi, Aug 23 2013
  • Maple
    A074477 := proc(n)
            A006530( 3^n-1) ;
    end proc: # R. J. Mathar, Jul 18 2015
    # alternative:
    a:= n-> max(seq(i[1], i=ifactors(3^n-1)[2])):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 18 2015
  • Mathematica
    Table[FactorInteger[3^n - 1] [[-1, 1]], {n, 40}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=1,40, v=factor(3^n-1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A024023(n)). - Michel Marcus, Jul 18 2015

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(660) in b-file from Amiram Eldar, Feb 01 2020
a(661)-a(690) in b-file from Max Alekseyev, May 22 2022

A085021 Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008

Examples

			a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
		

Crossrefs

omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
  • PARI
    a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015
Showing 1-10 of 33 results. Next