cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A057958 Number of prime factors of 3^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 3, 2, 5, 3, 5, 2, 7, 3, 6, 3, 8, 2, 5, 5, 10, 3, 8, 3, 10, 4, 7, 3, 11, 5, 5, 6, 9, 4, 11, 4, 12, 5, 8, 6, 12, 3, 7, 7, 13, 4, 11, 3, 11, 9, 6, 5, 17, 7, 10, 6, 9, 4, 13, 8, 13, 7, 9, 3, 17, 3, 8, 6, 14, 7, 12, 4, 12, 6, 11, 2, 16, 5, 8, 10, 11, 7, 15, 4, 18, 9, 8, 5, 18, 7, 6, 8, 16, 4, 19, 5
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), this sequence (b=3), A046051 (b=2).

Programs

Formula

Mobius transform of A085028. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024023(n)). - Amiram Eldar, Feb 01 2020

Extensions

Offset corrected by Amiram Eldar, Feb 01 2020

A059885 a(n) = |{m : multiplicative order of 3 mod m = n}|.

Original entry on oeis.org

2, 2, 2, 6, 4, 10, 2, 14, 4, 16, 6, 58, 2, 10, 16, 88, 6, 108, 6, 150, 10, 54, 6, 290, 18, 10, 56, 138, 14, 716, 14, 144, 22, 118, 40, 1088, 6, 54, 90, 670, 14, 730, 6, 570, 356, 22, 30, 13864, 124, 342, 54, 138, 14, 3912, 116, 1362, 118, 238, 6, 22058, 6, 110
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). a(n) = number of orders of degree-n monic irreducible polynomials over GF(3).
Also, number of primitive factors of 3^n - 1 (cf. A218356). - Max Alekseyev, May 03 2022

Examples

			a(2) = |{4,8}| = 2, a(4) = |{5,10,16,20,40,80}| = 6, a(6) = |{7,14,28,52,56,91,104,182,364,728}| = 10.
		

Crossrefs

Primitive factors of b^n - 1: A059499 (b=2), this sequence (b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=3 of A212957.

Programs

  • Maple
    with(numtheory); A059885 := proc(n) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*tau(3^d-1); od; RETURN(s); end;
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 3^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 62} ] (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(3^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(3^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A074476 Largest prime factor of 3^n + 1.

Original entry on oeis.org

2, 2, 5, 7, 41, 61, 73, 547, 193, 37, 1181, 661, 6481, 398581, 16493, 271, 21523361, 1021, 530713, 101917, 42521761, 2269, 570461, 23535794707, 769, 22996651, 4795973261, 19927, 647753, 5385997, 47763361, 22434744889, 926510094425921
Offset: 0

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Crossrefs

Cf. A006530, A034472, A074477 (largest prime factor of 3^n - 1), A002587 (largest prime factor of 2^n + 1), A074478 (largest prime factor of 5^n + 1).

Programs

  • Magma
    [Maximum(PrimeDivisors(3^n+1)): n in [0..40]]; // Vincenzo Librandi, Aug 23 2013
  • Mathematica
    Table[FactorInteger[3^n + 1][[-1, 1]], {n, 0, 40}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=0,35, v=factor(3^n+1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A034472(n)). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(658) in b-file from Amiram Eldar, Feb 01 2020
a(659)-a(691) in b-file from Max Alekseyev, Apr 25 2022, Jul 25 2023

A057952 Number of prime factors of 9^n - 1 (counted with multiplicity).

Original entry on oeis.org

3, 5, 5, 7, 6, 8, 5, 10, 8, 10, 7, 11, 5, 9, 11, 12, 8, 12, 7, 13, 11, 11, 6, 17, 10, 9, 13, 13, 9, 17, 8, 14, 12, 12, 11, 16, 8, 11, 15, 18, 8, 18, 6, 16, 19, 10, 10, 21, 12, 18, 15, 13, 8, 18, 15, 19, 15, 13, 7, 24, 7, 13, 19, 16, 12, 18, 8, 17, 15, 20, 9, 24, 9, 13, 22, 17, 13, 22
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A046051 (b=2), A057958 (b=3), A057957 (b=4), A057956 (b=5), A057955 (b=6), A057954 (b=7), A057953 (b=8), this sequence (b=9), A057951 (b=10), A366682 (b=11), A366708 (b=12).

Programs

  • Mathematica
    PrimeOmega[Table[9^n - 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

Mobius transform of A085034. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024101(n)) = A057958(2*n). - Amiram Eldar, Feb 02 2020
a(n) = A057941(n) + A057958(n). - Max Alekseyev, Jan 07 2024

A274906 Largest prime factor of 4^n - 1.

Original entry on oeis.org

3, 5, 7, 17, 31, 13, 127, 257, 73, 41, 683, 241, 8191, 127, 331, 65537, 131071, 109, 524287, 61681, 5419, 2113, 2796203, 673, 4051, 8191, 262657, 15790321, 3033169, 1321, 2147483647, 6700417, 599479, 131071, 122921, 38737, 616318177, 525313, 22366891
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^7 - 1 = 16383 = 3*43*127, so a(7) = 127
		

Crossrefs

Second bisection of A005420. - Michel Marcus, Jul 13 2016
Cf. largest prime factor of k^n-1: A005420 (k=2), A074477 (k=3), this sequence (k=4), A074479 (k=5), A274907 (k=6), A074249 (k=7), A274908 (k=8), A274909 (k=9), A005422 (k=10), A274910 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[4^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024036(n)). - Michel Marcus, Jul 11 2016
a(n) = max(A002587(n),A005420(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(603) in b-file from Amiram Eldar, Feb 08 2020
a(604)-a(1128) in b-file from Max Alekseyev, Jul 25 2023, Mar 15 2025

A143663 a(n) is the least prime such that the multiplicative order of 3 mod a(n) equals n, or a(n)=1 if no such prime exists.

Original entry on oeis.org

2, 1, 13, 5, 11, 7, 1093, 41, 757, 61, 23, 73, 797161, 547, 4561, 17, 1871, 19, 1597, 1181, 368089, 67, 47, 6481, 8951, 398581, 109, 29, 59, 31, 683, 21523361, 2413941289, 103, 71, 530713, 13097927, 2851, 313, 42521761, 83, 43, 431, 5501, 181, 23535794707
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Comments

If a(n) differs from 1, then a(n) is the minimal prime divisor of A064079(n).

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    a:= proc(n) local f,p;
    f:= numtheory:-factorset(3^n - 1);
    for  p in f do
       if numtheory:-order(3,p) = n then return p fi
    od:
    1
    end proc:
    seq(a(n),n=1..100); # Robert Israel, Oct 13 2014
  • Mathematica
    p = 2; t = Table[0, {100}]; While[p < 100000001, a = MultiplicativeOrder[3, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p; Print[{a, p}]];  p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)

Extensions

More terms from Robert G. Wilson v, Dec 11 2013

A274909 Largest prime factor of 9^n - 1.

Original entry on oeis.org

2, 5, 13, 41, 61, 73, 1093, 193, 757, 1181, 3851, 6481, 797161, 16493, 4561, 21523361, 34511, 530713, 363889, 42521761, 368089, 570461, 23535794707, 6481, 22996651, 4795973261, 19927, 647753, 20381027, 47763361, 22434744889, 926510094425921, 2413941289
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			9^4 - 1 = 6560 = 2^5*5*41, so a(4) = 41.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(9^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[9^n-1][[-1,1]],{n,40}]

Formula

a(n) = A006530(A024101(n)).
a(n) = A074477(2*n). - Amiram Eldar, Feb 02 2020
a(n) = max(A074476(n),A074477(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(330) in b-file from Amiram Eldar, Feb 02 2020
a(331)-a(691) in b-file from Max Alekseyev, May 22 2022, Jul 25 2023

A074479 Largest prime factor of 5^n - 1.

Original entry on oeis.org

2, 3, 31, 13, 71, 31, 19531, 313, 829, 521, 12207031, 601, 305175781, 19531, 1741, 11489, 466344409, 5167, 3981071, 9161, 519499, 12207031, 332207361361, 390001, 9384251, 305175781, 31051, 234750601, 22125996444329, 7621
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			5^9 - 1 = 1953124 = (2^2)*19*31*829, so a(9) = 829.
		

Crossrefs

Cf. A074478 (largest prime factor of 5^n + 1), A074477 (largest prime factor of 3^n - 1), A074249 (largest prime factor of 7^n - 1).
Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(5^n-1)): n in [1..45]]; // Vincenzo Librandi, Jul 13 2016
  • Mathematica
    Table[FactorInteger[5^n - 1] [[-1, 1]], {n, 30}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=1,32, v=factor(5^n-1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A024049(n)). - Vincenzo Librandi, Jul 13 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(448) in b-file from Amiram Eldar, Feb 01 2020
a(449)-a(502) in b-file from Max Alekseyev, Apr 25 2022

A085028 Number of prime factors of cyclotomic(n,3), which is A019321(n), the value of the n-th cyclotomic polynomial evaluated at x=3.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 1, 3, 2, 1, 2, 2, 4, 1, 3, 3, 2, 2, 3, 1, 4, 3, 5, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 3, 4, 3, 2, 3, 2, 4, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057958, number of prime factors of 3^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), this sequence (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 3]]][[2]], {n, 1, 100}]

A366718 Largest prime factor of 12^n - 1.

Original entry on oeis.org

11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024140(n)).
Showing 1-10 of 11 results. Next