cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A057941 Number of prime factors of 3^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 2, 3, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 2, 5, 4, 4, 3, 7, 4, 3, 6, 5, 4, 7, 4, 5, 6, 4, 2, 7, 4, 5, 4, 5, 4, 8, 5, 4, 7, 3, 5, 10, 4, 5, 4, 5, 8, 9, 4, 4, 5, 7, 6, 8, 4, 4, 7, 4, 5, 13, 2, 5, 6, 4, 5, 9, 9, 7, 8, 4, 5, 12, 6, 6, 7, 5, 5, 12, 5, 6, 10, 9, 7, 11, 6, 5, 9, 8, 4, 9, 4, 8, 6, 5, 9, 14, 6, 4
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), this sequence (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057958(2n) - A057958(n) - T. D. Noe, Jun 19 2003
a(n) = A001222(A034472(n)). - Amiram Eldar, Feb 01 2020

A274903 Largest prime factor of 4^n + 1.

Original entry on oeis.org

2, 5, 17, 13, 257, 41, 241, 113, 65537, 109, 61681, 2113, 673, 1613, 15790321, 1321, 6700417, 26317, 38737, 525313, 4278255361, 14449, 2931542417, 30269, 22253377, 268501, 308761441, 279073, 54410972897, 536903681, 4562284561, 384773, 67280421310721
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^3 + 1 = 65 = 5*13, so a(3) = 13.
		

Crossrefs

Cf. largest prime factor of k^n+1: A002587 (k=2), A074476 (k=3), this sequence (k=4), A074478 (k=5), A274904 (k=6), A227575 (k=7), A274905 (k=8), A002592 (k=9), A003021 (k=10), A062308 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n+1)): n in [0..35]];
    
  • Mathematica
    Table[FactorInteger[4^n + 1][[-1, 1]], {n, 0, 30}]
  • PARI
    a(n)=my(f=factor(4^n+1)[,1]); f[#f] \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = A006530(A052539(n)). - Michel Marcus, Jul 11 2016
a(2n) = A002590(n). a(2n+1) = A229747(n). - R. J. Mathar, Feb 28 2018
a(n) = A002587(2*n). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(531) in b-file from Amiram Eldar, Feb 01 2020
a(532)-a(583) in b-file from Max Alekseyev, Apr 25 2022, Mar 15 2025

A274909 Largest prime factor of 9^n - 1.

Original entry on oeis.org

2, 5, 13, 41, 61, 73, 1093, 193, 757, 1181, 3851, 6481, 797161, 16493, 4561, 21523361, 34511, 530713, 363889, 42521761, 368089, 570461, 23535794707, 6481, 22996651, 4795973261, 19927, 647753, 20381027, 47763361, 22434744889, 926510094425921, 2413941289
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			9^4 - 1 = 6560 = 2^5*5*41, so a(4) = 41.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(9^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[9^n-1][[-1,1]],{n,40}]

Formula

a(n) = A006530(A024101(n)).
a(n) = A074477(2*n). - Amiram Eldar, Feb 02 2020
a(n) = max(A074476(n),A074477(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(330) in b-file from Amiram Eldar, Feb 02 2020
a(331)-a(691) in b-file from Max Alekseyev, May 22 2022, Jul 25 2023

A074477 Largest prime factor of 3^n - 1.

Original entry on oeis.org

2, 2, 13, 5, 11, 13, 1093, 41, 757, 61, 3851, 73, 797161, 1093, 4561, 193, 34511, 757, 363889, 1181, 368089, 3851, 1001523179, 6481, 391151, 797161, 8209, 16493, 20381027, 4561, 4404047, 21523361, 2413941289, 34511, 2664097031, 530713
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			3^7 - 1 = 2186 = 2*1093, so a(7) = 1093.
		

Crossrefs

Cf. A006530 (largest prime factor), A024023 (3^n-1).
Cf. A074476 (largest prime factor of 3^n + 1), A005420 (largest prime factor of 2^n - 1), A074479 (largest prime factor of 5^n - 1).

Programs

  • Magma
    [Maximum(PrimeDivisors(3^n-1)): n in [1..40]]; // Vincenzo Librandi, Aug 23 2013
  • Maple
    A074477 := proc(n)
            A006530( 3^n-1) ;
    end proc: # R. J. Mathar, Jul 18 2015
    # alternative:
    a:= n-> max(seq(i[1], i=ifactors(3^n-1)[2])):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 18 2015
  • Mathematica
    Table[FactorInteger[3^n - 1] [[-1, 1]], {n, 40}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=1,40, v=factor(3^n-1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A024023(n)). - Michel Marcus, Jul 18 2015

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(660) in b-file from Amiram Eldar, Feb 01 2020
a(661)-a(690) in b-file from Max Alekseyev, May 22 2022

A074478 Largest prime factor of 5^n + 1.

Original entry on oeis.org

2, 3, 13, 7, 313, 521, 601, 449, 11489, 5167, 9161, 5281, 390001, 38923, 234750601, 7621, 29423041, 41540861, 6597973, 213029, 632133361, 7603, 1030330938209, 42272797713043, 152587500001, 50150933101, 83181652304609, 16018507
Offset: 0

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			5^11 + 1 = 48828126 = 2*3*23*67*5281, so a(11) = 5281.
		

Crossrefs

Cf. A002587 (largest prime factor of 2^n + 1), A074479 (largest prime factor of 5^n - 1), A074476 (largest prime factor of 3^n + 1), A227575 (largest prime factor of 7^n + 1).

Programs

  • Magma
    [Maximum(PrimeDivisors(5^n+1)): n in [0..30]]; // Vincenzo Librandi, Jul 09 2016
  • Mathematica
    Table[FactorInteger[5^n + 1][[-1, 1]], {n, 0, 30}] (* Bruno Berselli, Aug 23 2013 *)
  • PARI
    for(n=0,30, v=factor(5^n+1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A034474(n)). - Michel Marcus, Jul 09 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 09 2016
a(101)-a(451) in b-file from Amiram Eldar, Feb 01 2020
a(452)-a(471) in b-file from Max Alekseyev, Apr 25 2022, Jan 04 2024

A366579 a(n) = phi(3^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 4, 12, 40, 120, 288, 1092, 3072, 7776, 23600, 87120, 259200, 797160, 1847104, 5832000, 21523360, 63672480, 152845056, 580921200, 1700870400, 4368821184, 12550120000, 47071589412, 130459631616, 413939700000, 997562438080, 3012122557440, 11159367815680
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(3^n+1)}

Formula

a(n) = phi(3^n+1) = A000010(A034472(n)).

A366580 Number of distinct prime divisors of 3^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 2, 3, 4, 3, 3, 3, 2, 4, 5, 2, 4, 4, 3, 3, 5, 4, 2, 6, 4, 4, 6, 4, 4, 5, 3, 2, 6, 4, 4, 4, 4, 4, 7, 5, 3, 7, 2, 5, 9, 4, 4, 4, 4, 6, 8, 4, 3, 5, 6, 6, 7, 4, 3, 7, 3, 5, 11, 2, 4, 6, 3, 5, 8, 8, 6, 8, 3, 5, 11, 6, 5, 7, 4, 5, 11, 5, 5, 10, 8
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[3^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(3^n + 1), ", "))

Formula

a(n) = omega(3^n+1) = A001221(A034472(n)).

A366577 Number of divisors of 3^n+1.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 8, 6, 8, 24, 12, 12, 8, 6, 16, 48, 4, 24, 16, 12, 8, 72, 16, 6, 64, 24, 16, 96, 16, 24, 48, 12, 4, 96, 16, 24, 16, 24, 16, 192, 32, 12, 128, 6, 32, 768, 16, 24, 16, 24, 128, 384, 16, 12, 32, 96, 64, 192, 16, 12, 128, 12, 32, 4608, 4, 24, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=4 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,3^Range[0,100]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    a(n) = numdiv(3^n+1); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = sigma0(3^n+1) = A000005(A034472(n)).

A366578 Sum of the divisors of 3^n+1.

Original entry on oeis.org

3, 7, 18, 56, 126, 434, 1332, 3836, 10476, 42560, 109926, 315112, 816732, 2790074, 8906760, 30220288, 64570086, 229156928, 706911048, 2034690952, 5357742012, 21838961760, 56496274632, 164750562956, 456919958880, 1517043139136, 4661686010664, 16489453890560
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=126 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1,3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)

Formula

a(n) = sigma(3^n+1) = A000203(A034472(n)).

A002592 Largest prime factor of 9^n + 1.

Original entry on oeis.org

2, 5, 41, 73, 193, 1181, 6481, 16493, 21523361, 530713, 42521761, 570461, 769, 4795973261, 647753, 47763361, 926510094425921, 1743831169, 282429005041, 25480398173, 128653413121, 109688713, 56625998353, 70601370627701
Offset: 0

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 89.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A274903.

Programs

  • Magma
    [Maximum(PrimeDivisors(9^n+1)): n in [0..40]]; // Vincenzo Librandi, Jul 12 2016
  • Maple
    for n from 0 to 30 do t1:=ifactor(9^n+1); od;
  • Mathematica
    Table[FactorInteger[9^n + 1][[-1, 1]], {n, 0, 10}] (* Vincenzo Librandi, Jul 12 2016 *)

Formula

a(n) = A006530(A062396(n)). - Vincenzo Librandi, Jul 12 2016
a(n) = A074476(2*n). - Max Alekseyev, Apr 25 2022

Extensions

Terms up to a(315) in b-file from Sean A. Irvine, Apr 20 2014
Terms a(316)-a(345) in b-file from Max Alekseyev, Apr 24 2019, Sep 10 2020, Aug 26 2021, Apr 25 2022
Showing 1-10 of 18 results. Next