cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A074476 Largest prime factor of 3^n + 1.

Original entry on oeis.org

2, 2, 5, 7, 41, 61, 73, 547, 193, 37, 1181, 661, 6481, 398581, 16493, 271, 21523361, 1021, 530713, 101917, 42521761, 2269, 570461, 23535794707, 769, 22996651, 4795973261, 19927, 647753, 5385997, 47763361, 22434744889, 926510094425921
Offset: 0

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Crossrefs

Cf. A006530, A034472, A074477 (largest prime factor of 3^n - 1), A002587 (largest prime factor of 2^n + 1), A074478 (largest prime factor of 5^n + 1).

Programs

  • Magma
    [Maximum(PrimeDivisors(3^n+1)): n in [0..40]]; // Vincenzo Librandi, Aug 23 2013
  • Mathematica
    Table[FactorInteger[3^n + 1][[-1, 1]], {n, 0, 40}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=0,35, v=factor(3^n+1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A034472(n)). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(658) in b-file from Amiram Eldar, Feb 01 2020
a(659)-a(691) in b-file from Max Alekseyev, Apr 25 2022, Jul 25 2023

A274903 Largest prime factor of 4^n + 1.

Original entry on oeis.org

2, 5, 17, 13, 257, 41, 241, 113, 65537, 109, 61681, 2113, 673, 1613, 15790321, 1321, 6700417, 26317, 38737, 525313, 4278255361, 14449, 2931542417, 30269, 22253377, 268501, 308761441, 279073, 54410972897, 536903681, 4562284561, 384773, 67280421310721
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^3 + 1 = 65 = 5*13, so a(3) = 13.
		

Crossrefs

Cf. largest prime factor of k^n+1: A002587 (k=2), A074476 (k=3), this sequence (k=4), A074478 (k=5), A274904 (k=6), A227575 (k=7), A274905 (k=8), A002592 (k=9), A003021 (k=10), A062308 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n+1)): n in [0..35]];
    
  • Mathematica
    Table[FactorInteger[4^n + 1][[-1, 1]], {n, 0, 30}]
  • PARI
    a(n)=my(f=factor(4^n+1)[,1]); f[#f] \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = A006530(A052539(n)). - Michel Marcus, Jul 11 2016
a(2n) = A002590(n). a(2n+1) = A229747(n). - R. J. Mathar, Feb 28 2018
a(n) = A002587(2*n). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(531) in b-file from Amiram Eldar, Feb 01 2020
a(532)-a(583) in b-file from Max Alekseyev, Apr 25 2022, Mar 15 2025

A057939 Number of prime factors of 5^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 4, 2, 3, 3, 4, 3, 6, 4, 5, 3, 4, 3, 7, 3, 4, 5, 5, 4, 10, 4, 4, 4, 5, 5, 10, 3, 4, 7, 5, 4, 9, 6, 7, 6, 5, 4, 8, 5, 6, 6, 6, 3, 10, 3, 5, 5, 7, 7, 10, 5, 5, 6, 7, 7, 9, 3, 6, 6, 6, 4, 16, 4, 8, 7, 3, 7, 9, 7, 5, 6, 5, 5, 13, 5, 9, 10, 6, 6, 14, 6, 5, 7, 9, 5, 9, 7, 5, 12, 8, 4, 10, 6, 9, 7, 7, 7, 12
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), this sequence (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Mathematica
    PrimeOmega[5^Range[100]+1] (* Harvey P. Dale, Nov 27 2013 *)

Formula

a(n) = A057956(2n) - A057956(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A034474(n)). - Amiram Eldar, Feb 01 2020

A074479 Largest prime factor of 5^n - 1.

Original entry on oeis.org

2, 3, 31, 13, 71, 31, 19531, 313, 829, 521, 12207031, 601, 305175781, 19531, 1741, 11489, 466344409, 5167, 3981071, 9161, 519499, 12207031, 332207361361, 390001, 9384251, 305175781, 31051, 234750601, 22125996444329, 7621
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			5^9 - 1 = 1953124 = (2^2)*19*31*829, so a(9) = 829.
		

Crossrefs

Cf. A074478 (largest prime factor of 5^n + 1), A074477 (largest prime factor of 3^n - 1), A074249 (largest prime factor of 7^n - 1).
Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(5^n-1)): n in [1..45]]; // Vincenzo Librandi, Jul 13 2016
  • Mathematica
    Table[FactorInteger[5^n - 1] [[-1, 1]], {n, 30}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=1,32, v=factor(5^n-1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A024049(n)). - Vincenzo Librandi, Jul 13 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(448) in b-file from Amiram Eldar, Feb 01 2020
a(449)-a(502) in b-file from Max Alekseyev, Apr 25 2022

A227575 Largest prime factor of 7^n + 1.

Original entry on oeis.org

2, 2, 5, 43, 1201, 191, 181, 911, 169553, 117307, 4021, 10746341, 1201, 228511817, 13564461457, 6568801, 47072139617, 29078814248401, 13841169553, 4058036683, 810221830361, 309079, 83960385389, 3421093417510114543, 33232924804801, 79787519018560501
Offset: 0

Views

Author

Michel Marcus, Aug 22 2013

Keywords

Examples

			7^12 + 1 = 2*73*193*409*1201, so a(12) = 1201.
		

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(7^n+1)): n in [0..30]]; // Bruno Berselli, Aug 23 2013
  • Mathematica
    Table[FactorInteger[7^n + 1][[-1, 1]], {n, 0, 30}] (* Bruno Berselli, Aug 23 2013 *)
  • PARI
    a(n) = f = factor(7^n + 1); f[#f~, 1]; \\ Michel Marcus, Aug 22 2013
    

Formula

a(n) = A006530(A034491(n)). - Vincenzo Librandi, Jul 12 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(372) in b-file from Amiram Eldar, Feb 02 2020
a(373)-a(387) in b-file from Max Alekseyev, Apr 25 2022, Aug 30 2023

A366618 a(n) = phi(5^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 12, 36, 312, 1040, 7200, 25088, 183808, 557928, 4396800, 15333120, 121680000, 406812744, 2817007200, 8558784000, 76264519680, 254230063200, 1710194342400, 6349120596480, 47334145996800, 127169887444992, 1088029470747648, 3889097389599864
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[5^Range[0,30]+1] (* Harvey P. Dale, Jun 07 2025 *)
  • PARI
    {a(n) = eulerphi(5^n+1)}

A366615 Number of distinct prime divisors of 5^n + 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 3, 6, 3, 4, 5, 5, 4, 8, 4, 4, 4, 5, 4, 7, 3, 4, 7, 5, 4, 8, 6, 7, 6, 5, 4, 7, 5, 6, 6, 6, 3, 8, 3, 5, 5, 7, 7, 9, 5, 5, 6, 7, 7, 8, 3, 6, 6, 6, 4, 13, 4, 8, 7, 3, 7, 8, 7, 5, 6, 5, 5, 12, 5, 9, 9, 6, 6, 10, 6, 5, 7, 9
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[5^n+1],{n,0,90}] (* Harvey P. Dale, Apr 06 2025 *)
  • PARI
    for(n = 0, 100, print1(omega(5^n + 1), ", "))

Formula

a(n) = omega(5^n+1) = A001221(A034474(n)).

A366616 Number of divisors of 5^n+1.

Original entry on oeis.org

2, 4, 4, 12, 4, 8, 8, 16, 8, 32, 16, 32, 8, 16, 8, 96, 8, 16, 32, 32, 16, 576, 16, 16, 16, 32, 24, 320, 8, 16, 128, 32, 16, 384, 64, 128, 64, 32, 16, 192, 32, 64, 64, 64, 8, 512, 8, 32, 32, 128, 128, 768, 32, 32, 64, 128, 128, 384, 8, 64, 64, 64, 16, 24576, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=12 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 5^Range[0, 70] + 1] (* Paolo Xausa, Apr 20 2025 *)
  • PARI
    a(n) = numdiv(5^n+1);

Formula

a(n) = sigma0(5^n+1) = A000005(A034474(n)).

A366617 Sum of the divisors of 5^n+1.

Original entry on oeis.org

3, 12, 42, 312, 942, 6264, 25284, 162000, 620460, 4961280, 16161768, 103442688, 367381884, 2441936064, 9859525284, 76963663296, 228970112844, 1526377433328, 6339280635408, 38199227335200, 144103649734968, 1285221510144000, 3894650946433800, 24349131482713344
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=312 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 5^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(5^n+1) = A000203(A034474(n)).

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023
Showing 1-10 of 11 results. Next