cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A368125 A variant of A367894 with application of the distance minimization to the first of two symmetrized versions of the strip bijection between two square lattices as described in A368121.

Original entry on oeis.org

1, 8, 12, 60, 24, 72, 300, 264, 216, 624, 168, 1692, 2232, 1752, 4824, 1560, 9804, 17064, 13080, 35040, 12456, 57084, 123096, 92952
Offset: 1

Views

Author

Hugo Pfoertner, Dec 31 2023

Keywords

Crossrefs

A permutation of A368124.
A368130 is the analog for the second symmetrized version of the strip bijection.

A368129 A variant of A367146 with application of the distance minimization to the second of two symmetrized versions of the strip bijection between two square lattices as described in A368126.

Original entry on oeis.org

1, 8, 12, 24, 72, 156, 168, 216, 264, 624, 1560, 1752, 1836, 2232, 4824, 12456, 13080, 16380, 17064, 35040, 92184, 92952, 123096, 128844, 244584, 639192, 651432, 855240, 945756
Offset: 1

Views

Author

Hugo Pfoertner, Jan 03 2024

Keywords

Comments

Apparently, a(n) == 0 (mod 4) for n > 1. For cycles, whose lengths are multiples of 8, the visited points form 8 separated islands.
Larger terms are 1660752, 4293336, 4462104, 5787768, 6647916, 11050488, 28333080, 38414184, 45366204, 184427544.

Examples

			See files linked in A368130 for visualization of orbits.
		

Crossrefs

A368130 is a permutation of this sequence.
A368124 is the analog for the first symmetrized version of the strip bijection.

Programs

  • PARI
    \\ Uses definitions and functions from
    \\ a367150_PARI.txt and a368126_PARI.txt
    cycle(v) = {my (n=1, w=BijectionD(v, Bijectionk)); while (w!=v, n++; w=BijectionD(w, Bijectionk)); n};
    a368129(rmax=235) = {my (L=List()); for (r2=0, rmax^2, for (x=0, sqrtint(r2), my (y2=r2-x^2, y); if (issquare(y2, &y), if(x>=y, my (c=cycle([x, y])); if (setsearch(L, c)==0, print([c, [x, y], sqrt(x^2+y^2)], ", "); listput(L, c); listsort(L, 1)))))); L};
    a368129() \\ Terms < 1000, takes 5-10 minutes CPU time

A368130 A variant of A367894 with application of the distance minimization to the second of two symmetrized versions of the strip bijection between two square lattices as described in A368126.

Original entry on oeis.org

1, 8, 12, 24, 156, 72, 216, 1836, 624, 168, 1752, 264, 16380, 4824, 1560, 13080, 2232, 128844, 35040, 12456, 92952, 17064, 945756, 244584
Offset: 1

Views

Author

Hugo Pfoertner, Dec 30 2023

Keywords

Crossrefs

A permutation of A368129.
A368125 is the analog for the first symmetrized version of the strip bijection.

A368127 a(n) is the x-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368126.

Original entry on oeis.org

0, 1, 0, -1, -1, -1, 0, 1, 1, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 0, 1, 2, 3, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 5, 4, 4, 3, 2, 1, 0, 0, -1, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, 0, 0, 1, 1, 2, 3, 4, 4, 5, 6, 6, 6, 5, 4, 3
Offset: 0

Views

Author

Hugo Pfoertner, Jan 07 2024

Keywords

Crossrefs

A368128 gives the corresponding y-coordinates.
Analogous sequences, but without symmetrization: A367895, A367896.

Programs

  • PARI
    \\ ax(n), ay(n) after Kevin Ryde's functions in A174344 and A274923.
    \\ It is assumed that the PARI programs from A367150 and A368126 have been loaded and the functions defined there are available.
    ax(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, k, -k-n), if (n
    				

A368128 a(n) is the y-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368126.

Original entry on oeis.org

0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 1, 2, 3, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 1, 1, 2, 3, 4, 4, 5, 6, 5, 4, 4, 3, 2, 1, 0, 0, -1, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, 0, 0, 1, 2, 2, 3, 4
Offset: 0

Views

Author

Hugo Pfoertner, Jan 07 2024

Keywords

Crossrefs

A368127 gives the corresponding x-coordinates.

Programs

  • PARI
    \\ Identical to a368127(n), but with
    a368128(n) = BijectionD([ax(n), ay(n)], Bijectionk)[2];

A386241 Decimal expansion of sqrt(5)*sin(Pi/8).

Original entry on oeis.org

8, 5, 5, 7, 0, 6, 1, 6, 8, 6, 3, 1, 2, 8, 3, 8, 4, 7, 7, 7, 4, 8, 1, 8, 0, 7, 1, 8, 2, 4, 6, 8, 3, 7, 0, 7, 3, 0, 1, 7, 0, 4, 1, 9, 3, 5, 9, 7, 3, 3, 4, 5, 4, 8, 0, 8, 7, 2, 2, 4, 2, 2, 8, 6, 4, 8, 0, 0, 9, 5, 0, 6, 5, 9, 8, 8, 2, 5, 8, 7, 5, 5, 4, 5, 0, 0, 9
Offset: 0

Views

Author

Hugo Pfoertner, Jul 18 2025

Keywords

Comments

Upper bound of the wobbling distance S of two rotated square lattices. See A307110 and A307731 for the special case of rotation angle Pi/4. According to Jan Fricke (1999), the angle Pi/4 is the most unfavorable case, i.e., smaller bounds can be found for all other angles.

Examples

			0.8557061686312838477748180718246837073...
		

Crossrefs

Programs

Formula

The minimal polynomial is 8*x^4 - 40*x^2 + 25. - Joerg Arndt, Aug 02 2025

A368122 a(n) is the x-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368121.

Original entry on oeis.org

0, 1, 0, -1, -1, -1, 0, 1, 1, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 0, 1, 2, 3, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 5, 4, 4, 3, 2, 1, 1, 0, 0, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, -1, 0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 5, 5, 5, 4
Offset: 0

Views

Author

Hugo Pfoertner, Jan 06 2024

Keywords

Crossrefs

A368123 gives the corresponding y-coordinates.
Analogous pair of sequences, but without symmetrization: A367895, A367896.

Programs

  • PARI
    \\ ax(n), ay(n) after Kevin Ryde's functions in A174344 and A274923.
    \\ It is assumed that the PARI programs from A367150 and A368121 have been loaded and the functions defined there are available.
    ax(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, k, -k-n), if (n
    				

A368123 a(n) is the y-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368121.

Original entry on oeis.org

0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 1, 2, 3, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 0, 1, 2, 3, 4, 4, 5, 6, 5, 4, 4, 3, 2, 1, 1, 0, 0, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, -1, 0, 1, 1, 2, 3, 3
Offset: 0

Views

Author

Hugo Pfoertner, Jan 06 2024

Keywords

Crossrefs

A368122 gives the corresponding x-coordinates.

Programs

  • PARI
    \\ Identical to a368122(n), but with
    a368123(n) = BijectionD([ax(n), ay(n)],BijectionK)[2];
Previous Showing 11-18 of 18 results.