A368150
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x^2.
Original entry on oeis.org
1, 1, 3, 2, 6, 8, 3, 15, 25, 21, 5, 30, 76, 90, 55, 8, 60, 188, 324, 300, 144, 13, 114, 439, 948, 1251, 954, 377, 21, 213, 961, 2529, 4207, 4527, 2939, 987, 34, 390, 2026, 6246, 12606, 17154, 15646, 8850, 2584, 55, 705, 4136, 14640, 34590, 56970, 65840
Offset: 1
First eight rows:
1
1 3
2 6 8
3 15 25 21
5 30 76 90 55
8 60 188 324 300 144
13 114 439 948 1251 954 377
21 213 961 2529 4207 4527 2939 987
Row 4 represents the polynomial p(4,x) = 3 + 15*x + 25*x^2 + 21*x^3, so (T(4,k)) = (3,15,25,21), k=0..3.
Cf.
A000045 (column 1);
A001906 (p(n,n-1));
A000302 (row sums), (p(n,1));
A122803 (alternating row sums), (p(n,-1));
A190972 (p(n,2)),
A116415, (p(n,-2));
A190990, (p(n,3));
A057084, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368151.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368151
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 2 - x^2.
Original entry on oeis.org
1, 1, 3, 3, 6, 8, 5, 21, 25, 21, 11, 48, 101, 90, 55, 21, 123, 290, 414, 300, 144, 43, 282, 850, 1416, 1551, 954, 377, 85, 657, 2255, 4671, 6109, 5481, 2939, 987, 171, 1476, 5883, 13986, 22374, 24300, 18585, 8850, 2584, 341, 3303, 14736, 40320, 74295, 97713
Offset: 1
First eight rows:
1
1 3
3 6 8
5 21 25 21
11 48 101 90 55
21 123 290 414 300 144
43 282 850 1416 1551 954 377
85 657 2255 4671 6109 5481 2939 987
Row 4 represents the polynomial p(4,x) = 5 + 21 x + 25 x^2 + 21 x^3, so (T(4,k)) = (5,21,25,21), k=0..3.
Cf.
A001045 (column 1);
A001906 (p(n,n-1));
A001076 (row sums), (p(n,1));
A077985 (alternating row sums), (p(n,-1));
A186446 (p(n,2)),
A107839, (p(n,-2));
A190989, (p(n,3));
A023000, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 2 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368152
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 3 - x^2.
Original entry on oeis.org
1, 1, 3, 4, 6, 8, 7, 27, 25, 21, 19, 66, 126, 90, 55, 40, 204, 392, 504, 300, 144, 97, 522, 1363, 1884, 1851, 954, 377, 217, 1425, 4065, 7281, 8011, 6435, 2939, 987, 508, 3642, 12332, 24606, 34044, 31446, 21524, 8850, 2584, 1159, 9441, 35236, 82020, 127830
Offset: 1
First eight rows:
1
1 3
4 6 8
7 27 25 21
19 66 126 90 55
40 204 392 504 300 144
97 522 1363 1884 1851 954 377
217 1425 4065 7281 8011 6435 2939 987
Row 4 represents the polynomial p(4,x) = 7 + 27*x + 25*x^2 + 21*x^3, so (T(4,k)) = (7,27,25,21), k=0..3.
Cf.
A006130 (column 1);
A001906 (p(n,n-1));
A090017 (row sums), (p(n,1));
A002605 (alternating row sums), (p(n,-1));
A004187, (p(n,2));
A004254, (p(n,-2));
A190988, (p(n,3));
A190978 (unsigned), (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 3 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368153
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - x^2.
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 3, 4, -2, 4, 5, 5, 4, -10, 5, 8, 10, -3, 4, -25, 6, 13, 16, 1, -29, 14, -49, 7, 21, 28, -8, -24, -78, 56, -84, 8, 34, 47, -12, -88, -26, -162, 168, -132, 9, 55, 80, -31, -140, -200, 100, -330, 408, -195, 10, 89, 135, -58, -301, -230, -296
Offset: 1
First eight rows:
1
1 2
2 1 3
3 4 -2 4
5 5 4 -10 5
8 10 -3 4 -25 6
13 16 1 -29 14 -49 7
21 28 -8 -24 -78 56 -84 8
Row 4 represents the polynomial p(4,x) = 3 + 4*x - 2*x^2 + 4*x^3, so (T(4,k)) = (3,4,-2,4), k=0..3.
Cf.
A000045 (column 1);
A000027 (p(n,n-1));
A057083 (row sums), (p(n,1));
A182228 (alternating row sums), (p(n,-1));
A190970, (p(n,2));
A030195, (p(n,-2));
A052918, (p(n,-3));
A190972, (p(n,-4));
A057085, (p(n,-5));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 3x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368155
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - 2*x^2.
Original entry on oeis.org
1, 1, 3, 2, 3, 7, 3, 9, 5, 15, 5, 15, 26, 3, 31, 8, 30, 43, 63, -15, 63, 13, 54, 104, 87, 144, -81, 127, 21, 99, 203, 273, 115, 333, -275, 255, 34, 177, 416, 549, 609, -9, 806, -789, 511, 55, 315, 811, 1263, 1146, 1260, -725, 2043, -2071, 1023, 89, 555, 1573
Offset: 1
First eight rows:
1
1 3
2 3 7
3 9 5 15
5 15 26 3 31
8 30 43 63 -15 63
13 54 104 87 144 -81 127
21 99 203 273 115 333 -275 255
Row 4 represents the polynomial p(4,x) = 3 + 9*x + 5*x^2 + 15*x^3, so (T(4,k)) = (3,9,5,15), k=0..3.
Cf.
A000045 (column 1);
A000225, (p(n,n-1));
A001787 (row sums), (p(n,1));
A002605 (alternating row sums), (p(n,-1));
A004254, (p(n,-2));
A057084, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152,
A368153,
A368154,
A368156.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 3x - 2x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368156
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + x^2.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 3, 10, 14, 12, 5, 20, 41, 44, 29, 8, 40, 98, 148, 131, 70, 13, 76, 224, 408, 497, 376, 169, 21, 142, 482, 1044, 1542, 1588, 1052, 408, 34, 260, 1003, 2492, 4351, 5456, 4894, 2888, 985, 55, 470, 2026, 5684, 11359, 16790, 18400, 14672, 7813
Offset: 1
First eight rows:
1
1 2
2 4 5
3 10 14 12
5 20 41 44 29
8 40 98 148 131 70
13 76 224 408 497 376 169
21 142 482 1044 1542 1588 1052 408
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 14*x^2 + 12*x^3, so (T(4,k)) = (3,10,14,12), k=0..3.
Cf.
A000045 (column 1);
A000129, (p(n,n-1));
A007482 (row sums), (p(n,1));
A077925 (alternating row sums), (p(n,-1));
A057088, (p(n,2));
A015523, (p(n,-2));
A015568, (p(n,3));
A180250, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152,
A368153,
A368154,
A368155.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 2x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367564
Triangular array read by rows: T(n, k) = binomial(n, k) * A001333(n - k).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 17, 28, 18, 4, 1, 41, 85, 70, 30, 5, 1, 99, 246, 255, 140, 45, 6, 1, 239, 693, 861, 595, 245, 63, 7, 1, 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1, 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1, 3363, 13930, 25965, 28680, 20790, 10332, 3570, 840, 135, 10, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 3, 2, 1;
[3] 7, 9, 3, 1;
[4] 17, 28, 18, 4, 1;
[5] 41, 85, 70, 30, 5, 1;
[6] 99, 246, 255, 140, 45, 6, 1;
[7] 239, 693, 861, 595, 245, 63, 7, 1;
[8] 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1;
[9] 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1;
-
P := proc(n) option remember; ifelse(n <= 1, 1, 2*P(n - 1) + P(n - 2)) end:
T := (n, k) -> P(n - k) * binomial(n, k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
-
P[n_] := P[n] = If[n <= 1, 1, 2 P[n - 1] + P[n - 2]];
T[n_, k_] := P[n - k] Binomial[n, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 10 2024, after Peter Luschny *)
A368149
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x^2.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 3, 10, 10, 4, 5, 20, 31, 20, 5, 8, 40, 78, 76, 35, 6, 13, 76, 184, 232, 161, 56, 7, 21, 142, 406, 636, 582, 308, 84, 8, 34, 260, 861, 1604, 1831, 1296, 546, 120, 9, 55, 470, 1766, 3820, 5215, 4630, 2640, 912, 165, 10, 89, 840, 3533, 8696
Offset: 1
First eight rows:
1
1 2
2 4 3
3 10 10 4
5 20 31 20 5
8 40 78 76 35 6
13 76 184 232 161 56 7
21 142 406 636 582 308 84 8
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 10*x^2 + 4*x^3, so (T(4,k)) = (3,10,10,4), k=0..3.
Cf.
A000045 (column 1);
A000027 (p(n,n-1));
A000244 (row sums), (p(n,1));
A033999 (alternating row sums), (p(n,-1));
A116415 (p(n,2)),
A000748, (p(n,-2));
A152268, (p(n,3));
A190969, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368157
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + 2*x^2.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 3, 10, 16, 16, 5, 20, 46, 56, 44, 8, 40, 108, 184, 188, 120, 13, 76, 244, 496, 692, 608, 328, 21, 142, 520, 1248, 2088, 2480, 1920, 896, 34, 260, 1074, 2936, 5764, 8256, 8592, 5952, 2448, 55, 470, 2156, 6616, 14764, 24760, 31200, 28992
Offset: 1
First eight rows:
1
1 2
2 4 6
3 10 16 16
5 20 46 56 44
8 40 108 184 188 120
13 76 244 496 692 608 328
21 142 520 1248 2088 2480 1920 896
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 16*x^2 + 16*x^3, so (T(4,k)) = (3,10,16,16), k=0..3.
Cf.
A000045 (column 1);
A002605, (p(n,n-1));
A030195 (row sums), (p(n,1));
A182228 (alternating row sums), (p(n,-1));
A015545, (p(n,2));
A099012, (p(n,-2));
A087567, (p(n,3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152,
A368153,
A368154,
A368155,
A368156.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 2x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Comments