cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A369144 Number of labeled simple graphs with n edges covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 90, 4935, 200970, 7636860, 291089610, 11459170800, 471932476290, 20447369179380, 933942958593645, 44981469288560805, 2282792616992648670, 121924195590795244920, 6843305987751060036720, 403003907531795513467260, 24861219342100679072572470
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2024

Keywords

Examples

			The term a(6) = 90 counts all permutations of the (non-connected) graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}}.
		

Crossrefs

The covering complement is counted by A137916.
Without the choice condition we have A367863, covering case of A116508.
Allowing any number of edges gives A367868, covering case of A367867.
With loops we have A368730, covering case of A368596, unlabeled A368835.
This is the covering case of A369143.
A003465 counts covering set-systems, unlabeled A055621.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems, unlabeled A000612.
A322661 counts covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,6}]

Formula

a(n) = A367863(n) - A137916(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A370805 Number of condensed integer partitions of n into parts > 1.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 15, 18, 22, 27, 34, 41, 51, 62, 75, 90, 109, 129, 153, 185, 217, 258, 307, 359, 421, 493, 577, 675, 788, 909, 1062, 1227, 1418, 1633, 1894, 2169, 2497, 2860, 3285, 3754, 4298, 4894, 5587, 6359, 7230, 8215, 9331, 10567, 11965
Offset: 0

Views

Author

Gus Wiseman, Mar 04 2024

Keywords

Comments

These are partitions without ones such that it is possible to choose a different divisor of each part.

Examples

			The a(0) = 1 through a(9) = 6 partitions:
  ()  .  (2)  (3)  (4)    (5)    (6)    (7)      (8)      (9)
                   (2,2)  (3,2)  (3,3)  (4,3)    (4,4)    (5,4)
                                 (4,2)  (5,2)    (5,3)    (6,3)
                                        (3,2,2)  (6,2)    (7,2)
                                                 (3,3,2)  (4,3,2)
                                                 (4,2,2)  (5,2,2)
		

Crossrefs

The version with ones is A239312, complement A370320.
These partitions have as ranks the odd terms of A368110, complement A355740.
The version for prime factors is A370592, complement A370593, post A370807.
The complement without ones is A370804, ranked by the odd terms of A355740.
The version for factorizations is A370814, complement A370813.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A387118 Number of integer partitions of n without choosable initial intervals.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784, 5872, 7198, 8786, 10712, 13013, 15794, 19100, 23063, 27752, 33341, 39939, 47781, 57013, 67955, 80816, 95992, 113773, 134668
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
  (11)  (111)  (211)   (221)    (222)     (511)      (611)
               (1111)  (311)    (411)     (2221)     (2222)
                       (2111)   (2211)    (3211)     (3221)
                       (11111)  (3111)    (4111)     (3311)
                                (21111)   (22111)    (4211)
                                (111111)  (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement is counted by A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
For divisors instead of initial intervals we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of initial intervals we have A370593, ranks A355529.
These partitions have ranks A387113.
For partitions instead of initial intervals we have A387134.
The complement for partitions is A387328.
For strict partitions instead of initial intervals we have A387137, ranks A387176.
The complement for strict partitions is A387178.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Sep 05 2025

A387137 Number of integer partitions of n whose parts do not have choosable sets of strict integer partitions.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 9, 14, 20, 29, 39, 56, 74, 101, 134, 178, 232, 305, 392, 508, 646, 825, 1042, 1317, 1649, 2066, 2567, 3190, 3937, 4859, 5960, 7306, 8914, 10863, 13183, 15984, 19304, 23288, 28003, 33631, 40272, 48166, 57453, 68448, 81352, 96568, 114383
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.
a(n) is the number of integer partitions of n such that it is not possible to choose a sequence of distinct strict integer partitions, one of each part.
Also the number of integer partitions of n with at least one part k whose multiplicity exceeds A000009(k).

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (422)
               (211)   (311)    (411)     (511)      (611)
               (1111)  (2111)   (2211)    (2221)     (2222)
                       (11111)  (3111)    (3211)     (3221)
                                (21111)   (4111)     (3311)
                                (111111)  (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement for initial intervals is A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
For divisors instead of strict partitions we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of strict partitions we have A370593, ranks A355529.
For initial intervals instead of strict partitions we have A387118, ranks A387113.
For all partitions instead of strict partitions we have A387134, ranks A387577.
These partitions are ranked by A387176.
The complement is counted by A387178, ranks A387177.
The complement for partitions is A387328, ranks A387576.
The version for constant partitions is A387329, ranks A387180.
The complement for constant partitions is A387330, ranks A387181.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[strptns/@#],UnsameQ@@#&]]==0&]],{n,0,15}]

A368731 Number of non-isomorphic n-element sets of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 10, 97, 2160, 126862, 21485262, 11105374322, 18109358131513, 95465831661532570, 1660400673336788987026, 96929369602251313489896310, 19268528295096123543660356281600, 13203875101002459910158494602665950757, 31517691852305548841992346407978317698725021
Offset: 0

Views

Author

Gus Wiseman, Jan 07 2024

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 10 set-systems:
  {{1},{2},{3}}
  {{1},{2},{1,2}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{1,3}}
  {{1},{1,2},{2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

The case of graphs is A001434, labeled A116508.
Labeled version is A136556, covering A054780, binomial transform of A367916.
The case of labeled covering graphs is A367863, binomial transform A367862.
These include the set-systems ranked by A367917.
The covering case is A368186, for graphs A006649, connected A057500.
Requiring all edges to be singletons or pairs gives A368598.
A003465 counts covers with any number of edges, unlabeled A055621.
A046165 counts minimal covers, ranks A309326.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,n}],{n}]]],{n,0,4}]
  • PARI
    a(n) = polcoef(G(n, n), n) \\ G defined in A368186. - Andrew Howroyd, Jan 11 2024

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 11 2024

A387134 Number of integer partitions of n whose parts do not have choosable sets of integer partitions.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 8, 12, 17, 25, 34, 49, 65, 89, 118, 158, 206, 271, 349, 453, 578, 740, 935, 1186, 1486, 1865, 2322, 2890, 3572, 4415, 5423, 6659, 8134, 9927, 12062, 14643, 17706, 21387, 25746, 30957, 37109, 44433, 53054, 63273, 75276, 89444, 106044
Offset: 0

Views

Author

Gus Wiseman, Aug 29 2025

Keywords

Comments

Number of integer partitions of n such that it is not possible to choose a sequence of distinct integer partitions, one of each part.
Also the number of integer partitions of n with at least one part k satisfying that the multiplicity of k exceeds the number of integer partitions of k.

Examples

			The a(2) = 1 through a(8) = 12 partitions:
  (11)  (111)  (211)   (311)    (222)     (511)      (611)
               (1111)  (2111)   (411)     (2221)     (2222)
                       (11111)  (2211)    (3211)     (3311)
                                (3111)    (4111)     (4211)
                                (21111)   (22111)    (5111)
                                (111111)  (31111)    (22211)
                                          (211111)   (32111)
                                          (1111111)  (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

These partitions are ranked by A276079.
For divisors instead of partitions we have A370320, complement A239312.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of partitions we have A370593, ranks A355529.
For initial intervals instead of partitions we have A387118, complement A238873.
For just choices of strict partitions we have A387137.
The complement is counted by A387328, ranks A276078.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]]==0&]],{n,0,15}]

A387178 Number of integer partitions of n whose parts have choosable sets of strict integer partitions.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 745, 882, 1043, 1229, 1447, 1700, 1993, 2333, 2727, 3182, 3707, 4311, 5008, 5808, 6727, 7782, 8990, 10371, 11952, 13756, 15815, 18161
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

First differs from A052337 in having 745 instead of 746.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.
a(n) is the number of integer partitions of n such that it is possible to choose a sequence of distinct strict integer partitions of each part.
Also the number of integer partitions of n with no part k whose multiplicity exceeds A000009(k).

Examples

			The partition y = (3,3,2) has sets of strict integer partitions ({(2,1),(3)},{(2,1),(3)},{(2)}), and we have the choice ((2,1),(3),(2)) or ((3),(2,1),(2)), so y is counted under a(8).
The a(1) = 1 through a(9) = 10 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                          (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (3,3,1)  (7,1)    (8,1)
                                          (4,2,1)  (3,3,2)  (4,3,2)
                                                   (4,3,1)  (4,4,1)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
                                                            (3,3,2,1)
		

Crossrefs

For initial intervals instead of strict partitions we have A238873, ranks A387112.
For divisors instead of strict partitions we have A239312, ranks A368110.
The complement for divisors is A370320, ranks A355740.
For prime factors instead of strict partitions we have A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
The complement for initial intervals is A387118, ranks A387113.
The complement for all partitions is A387134, ranks A387577.
The complement is counted by A387137, ranks A387176.
These partitions are ranked by A387177.
For all partitions instead of just strict partitions we have A387328, ranks A387576.
The complement for constant partitions is A387329, ranks A387180.
For constant partitions instead of strict partitions we have A387330, ranks A387181.
A000041 counts integer partitions, strict A000009.
A358914 counts twice-partitions into distinct strict partitions.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[strptns/@#],UnsameQ@@#&]!={}&]],{n,0,15}]
Previous Showing 31-37 of 37 results.