A369144
Number of labeled simple graphs with n edges covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 90, 4935, 200970, 7636860, 291089610, 11459170800, 471932476290, 20447369179380, 933942958593645, 44981469288560805, 2282792616992648670, 121924195590795244920, 6843305987751060036720, 403003907531795513467260, 24861219342100679072572470
Offset: 0
The term a(6) = 90 counts all permutations of the (non-connected) graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}}.
The covering complement is counted by
A137916.
Without the choice condition we have
A367863, covering case of
A116508.
This is the covering case of
A369143.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,6}]
A370805
Number of condensed integer partitions of n into parts > 1.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 15, 18, 22, 27, 34, 41, 51, 62, 75, 90, 109, 129, 153, 185, 217, 258, 307, 359, 421, 493, 577, 675, 788, 909, 1062, 1227, 1418, 1633, 1894, 2169, 2497, 2860, 3285, 3754, 4298, 4894, 5587, 6359, 7230, 8215, 9331, 10567, 11965
Offset: 0
The a(0) = 1 through a(9) = 6 partitions:
() . (2) (3) (4) (5) (6) (7) (8) (9)
(2,2) (3,2) (3,3) (4,3) (4,4) (5,4)
(4,2) (5,2) (5,3) (6,3)
(3,2,2) (6,2) (7,2)
(3,3,2) (4,3,2)
(4,2,2) (5,2,2)
These partitions have as ranks the odd terms of
A368110, complement
A355740.
The complement without ones is
A370804, ranked by the odd terms of
A355740.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
-
Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]],{n,0,30}]
A387118
Number of integer partitions of n without choosable initial intervals.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784, 5872, 7198, 8786, 10712, 13013, 15794, 19100, 23063, 27752, 33341, 39939, 47781, 57013, 67955, 80816, 95992, 113773, 134668
Offset: 0
The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
(11) (111) (211) (221) (222) (511) (611)
(1111) (311) (411) (2221) (2222)
(2111) (2211) (3211) (3221)
(11111) (3111) (4111) (3311)
(21111) (22111) (4211)
(111111) (31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For divisors instead of initial intervals we have
A370320, ranks
A355740.
For prime factors instead of initial intervals we have
A370593, ranks
A355529.
These partitions have ranks
A387113.
For partitions instead of initial intervals we have
A387134.
The complement for partitions is
A387328.
For strict partitions instead of initial intervals we have
A387137, ranks
A387176.
The complement for strict partitions is
A387178.
-
Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]
A387137
Number of integer partitions of n whose parts do not have choosable sets of strict integer partitions.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 6, 9, 14, 20, 29, 39, 56, 74, 101, 134, 178, 232, 305, 392, 508, 646, 825, 1042, 1317, 1649, 2066, 2567, 3190, 3937, 4859, 5960, 7306, 8914, 10863, 13183, 15984, 19304, 23288, 28003, 33631, 40272, 48166, 57453, 68448, 81352, 96568, 114383
Offset: 0
The a(2) = 1 through a(8) = 14 partitions:
(11) (111) (22) (221) (222) (322) (422)
(211) (311) (411) (511) (611)
(1111) (2111) (2211) (2221) (2222)
(11111) (3111) (3211) (3221)
(21111) (4111) (3311)
(111111) (22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
Twice-partitions of this type (into distinct strict partitions) are counted by
A358914.
For divisors instead of strict partitions we have
A370320, ranks
A355740.
For prime factors instead of strict partitions we have
A370593, ranks
A355529.
For initial intervals instead of strict partitions we have
A387118, ranks
A387113.
For all partitions instead of strict partitions we have
A387134, ranks
A387577.
These partitions are ranked by
A387176.
Cf.
A005703,
A052335,
A261049,
A270995,
A276078,
A335448,
A355535,
A367867,
A367901,
A367905,
A383706,
A387115.
-
strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[strptns/@#],UnsameQ@@#&]]==0&]],{n,0,15}]
A368731
Number of non-isomorphic n-element sets of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 10, 97, 2160, 126862, 21485262, 11105374322, 18109358131513, 95465831661532570, 1660400673336788987026, 96929369602251313489896310, 19268528295096123543660356281600, 13203875101002459910158494602665950757, 31517691852305548841992346407978317698725021
Offset: 0
Non-isomorphic representatives of the a(3) = 10 set-systems:
{{1},{2},{3}}
{{1},{2},{1,2}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
The case of labeled covering graphs is
A367863, binomial transform
A367862.
These include the set-systems ranked by
A367917.
Requiring all edges to be singletons or pairs gives
A368598.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,n}],{n}]]],{n,0,4}]
-
a(n) = polcoef(G(n, n), n) \\ G defined in A368186. - Andrew Howroyd, Jan 11 2024
A387134
Number of integer partitions of n whose parts do not have choosable sets of integer partitions.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 6, 8, 12, 17, 25, 34, 49, 65, 89, 118, 158, 206, 271, 349, 453, 578, 740, 935, 1186, 1486, 1865, 2322, 2890, 3572, 4415, 5423, 6659, 8134, 9927, 12062, 14643, 17706, 21387, 25746, 30957, 37109, 44433, 53054, 63273, 75276, 89444, 106044
Offset: 0
The a(2) = 1 through a(8) = 12 partitions:
(11) (111) (211) (311) (222) (511) (611)
(1111) (2111) (411) (2221) (2222)
(11111) (2211) (3211) (3311)
(3111) (4111) (4211)
(21111) (22111) (5111)
(111111) (31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
These partitions are ranked by
A276079.
For divisors instead of partitions we have
A370320, complement
A239312.
For prime factors instead of partitions we have
A370593, ranks
A355529.
For initial intervals instead of partitions we have
A387118, complement
A238873.
For just choices of strict partitions we have
A387137.
-
Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]]==0&]],{n,0,15}]
A387178
Number of integer partitions of n whose parts have choosable sets of strict integer partitions.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 745, 882, 1043, 1229, 1447, 1700, 1993, 2333, 2727, 3182, 3707, 4311, 5008, 5808, 6727, 7782, 8990, 10371, 11952, 13756, 15815, 18161
Offset: 0
The partition y = (3,3,2) has sets of strict integer partitions ({(2,1),(3)},{(2,1),(3)},{(2)}), and we have the choice ((2,1),(3),(2)) or ((3),(2,1),(2)), so y is counted under a(8).
The a(1) = 1 through a(9) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (3,1) (3,2) (3,3) (4,3) (4,4) (5,4)
(4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (3,3,1) (7,1) (8,1)
(4,2,1) (3,3,2) (4,3,2)
(4,3,1) (4,4,1)
(5,2,1) (5,3,1)
(6,2,1)
(3,3,2,1)
For initial intervals instead of strict partitions we have
A238873, ranks
A387112.
For divisors instead of strict partitions we have
A239312, ranks
A368110.
For prime factors instead of strict partitions we have
A370592, ranks
A368100.
These partitions are ranked by
A387177.
For all partitions instead of just strict partitions we have
A387328, ranks
A387576.
For constant partitions instead of strict partitions we have
A387330, ranks
A387181.
A358914 counts twice-partitions into distinct strict partitions.
-
strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n],Select[Tuples[strptns/@#],UnsameQ@@#&]!={}&]],{n,0,15}]
Comments