cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-65 of 65 results.

A371453 Numbers whose binary indices are all squarefree semiprimes.

Original entry on oeis.org

32, 512, 544, 8192, 8224, 8704, 8736, 16384, 16416, 16896, 16928, 24576, 24608, 25088, 25120, 1048576, 1048608, 1049088, 1049120, 1056768, 1056800, 1057280, 1057312, 1064960, 1064992, 1065472, 1065504, 1073152, 1073184, 1073664, 1073696, 2097152, 2097184
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
       32:                 100000 ~ {6}
      512:             1000000000 ~ {10}
      544:             1000100000 ~ {6,10}
     8192:         10000000000000 ~ {14}
     8224:         10000000100000 ~ {6,14}
     8704:         10001000000000 ~ {10,14}
     8736:         10001000100000 ~ {6,10,14}
    16384:        100000000000000 ~ {15}
    16416:        100000000100000 ~ {6,15}
    16896:        100001000000000 ~ {10,15}
    16928:        100001000100000 ~ {6,10,15}
    24576:        110000000000000 ~ {14,15}
    24608:        110000000100000 ~ {6,14,15}
    25088:        110001000000000 ~ {10,14,15}
    25120:        110001000100000 ~ {6,10,14,15}
  1048576:  100000000000000000000 ~ {21}
		

Crossrefs

Partitions of this type are counted by A002100, squarefree case of A101048.
For primes instead of squarefree semiprimes we get A326782.
For prime indices instead of binary indices we have A339113, A339112.
Allowing any squarefree numbers gives A368533.
This is the squarefree case of A371454.
A001358 lists squarefree semiprimes, squarefree A006881.
A005117 lists squarefree numbers.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Maple
    M:= 26: # for terms < 2^M
    P:= select(isprime, [$2..(M+1)/2]): nP:= nops(P):
    S:= select(`<`,{seq(seq(P[i]*P[j],i=1..j-1),j=1..nP)},M+1):
    R:= map(proc(s) local i; add(2^(i-1),i=s) end proc, combinat:-powerset(S) minus {{}}):
    sort(convert(R,list)); # Robert Israel, Apr 04 2024
  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sqfsemi[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
    Select[Range[10000],And@@sqfsemi/@bix[#]&]
  • Python
    def A371453(n): return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A371453(n):
        def f(x,n): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A006881(n):
            m, k = n, f(n,n)
            while m != k:
                m, k = k, f(k,n)
            return m
        return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024

A370588 Number of subsets of {1..n} containing n such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 6, 18, 12, 20, 36, 104, 76, 284, 320, 408, 252, 1548, 872, 3968, 2800, 4704, 8568, 24008, 10832, 14832, 40688, 18240, 43632, 176240, 97344, 449824, 95328, 404992, 760752, 698864, 436464, 3296048, 3564576, 4057904, 2677776, 16892352, 8676576
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3), so {4,5,6} is counted under a(6).

Examples

			The a(0) = 0 through a(8) = 12 subsets:
  .  .  {2}  {3}    {4}    {5}      {2,6}    {7}        {8}
             {2,3}  {3,4}  {2,5}    {3,6}    {2,7}      {3,8}
                           {3,5}    {4,6}    {3,7}      {5,8}
                           {4,5}    {2,5,6}  {4,7}      {6,8}
                           {2,3,5}  {3,5,6}  {5,7}      {7,8}
                           {3,4,5}  {4,5,6}  {2,3,7}    {3,5,8}
                                             {2,5,7}    {3,7,8}
                                             {2,6,7}    {5,6,8}
                                             {3,4,7}    {5,7,8}
                                             {3,5,7}    {6,7,8}
                                             {3,6,7}    {3,5,7,8}
                                             {4,5,7}    {5,6,7,8}
                                             {4,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370584, cf. A370582, complement A370583.
For any number of choices we have A370586, complement A370587.
For binary indices see A370638, A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.
A370636 counts choosable subsets for binary indices, complement A370637.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A371454 Numbers whose binary indices are all semiprimes.

Original entry on oeis.org

8, 32, 40, 256, 264, 288, 296, 512, 520, 544, 552, 768, 776, 800, 808, 8192, 8200, 8224, 8232, 8448, 8456, 8480, 8488, 8704, 8712, 8736, 8744, 8960, 8968, 8992, 9000, 16384, 16392, 16416, 16424, 16640, 16648, 16672, 16680, 16896, 16904, 16928, 16936, 17152
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
     8:           1000 ~ {4}
    32:         100000 ~ {6}
    40:         101000 ~ {4,6}
   256:      100000000 ~ {9}
   264:      100001000 ~ {4,9}
   288:      100100000 ~ {6,9}
   296:      100101000 ~ {4,6,9}
   512:     1000000000 ~ {10}
   520:     1000001000 ~ {4,10}
   544:     1000100000 ~ {6,10}
   552:     1000101000 ~ {4,6,10}
   768:     1100000000 ~ {9,10}
   776:     1100001000 ~ {4,9,10}
   800:     1100100000 ~ {6,9,10}
   808:     1100101000 ~ {4,6,9,10}
		

Crossrefs

Partitions of this type are counted by A101048, squarefree case A002100.
For primes instead of semiprimes we get A326782.
For prime indices instead of binary indices we have A339112, A339113.
The squarefree case is A371453.
A001358 lists semiprimes, squarefree A006881.
A005117 lists squarefree numbers.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    semi[n_]:=PrimeOmega[n]==2;
    Select[Range[10000],And@@semi/@bix[#]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A371454(n):
        def f(x,n): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A001358(n):
            m, k = n, f(n,n)
            while m != k:
                m, k = k, f(k,n)
            return m
        return sum(1<<A001358(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024

A368532 Minimal numbers whose binary indices of binary indices contradict a strict version of the axiom of choice.

Original entry on oeis.org

7, 25, 30, 42, 45, 51, 53, 54, 60, 75, 77, 78, 83, 85, 86, 90, 92, 99, 101, 102, 105, 108, 113, 114, 116, 120, 385, 390, 408, 428, 434, 436, 458, 460, 466, 468, 482, 484, 488, 496, 642, 645, 668, 680, 689, 692, 713, 716, 721, 724, 728, 737, 740, 752, 771, 773
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2023

Keywords

Comments

Minimality is relative to the ordering where x < y means the binary indices of x are a subset of those of y (a Boolean algebra).
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The terms the corresponding set-systems begin:
   7: {{1},{2},{1,2}}
  25: {{1},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  42: {{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  75: {{1},{2},{3},{1,2,3}}
  77: {{1},{1,2},{3},{1,2,3}}
  78: {{2},{1,2},{3},{1,2,3}}
  83: {{1},{2},{1,3},{1,2,3}}
  85: {{1},{1,2},{1,3},{1,2,3}}
  86: {{2},{1,2},{1,3},{1,2,3}}
  90: {{2},{3},{1,3},{1,2,3}}
  92: {{1,2},{3},{1,3},{1,2,3}}
  99: {{1},{2},{2,3},{1,2,3}}
		

Crossrefs

The version for MM-numbers of multiset partitions is A368187.
A000110 counts set partitions.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    vmin[y_]:=Select[y,Function[s,Select[DeleteCases[y,s], SubsetQ[bpe[s],bpe[#]]&]=={}]];
    Select[Range[100],Select[Tuples[bpe/@bpe[#]] ,UnsameQ@@#&]=={}&]//vmin

A370819 Number of subsets of {1..n-1} whose cardinality is one less than the length of the binary expansion of n; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 10, 15, 35, 56, 84, 120, 165, 220, 286, 364, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398, 850668
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Examples

			The a(1) = 1 through a(7) = 15 subsets:
  {}  {1}  {1}  {1,2}  {1,2}  {1,2}  {1,2}
           {2}  {1,3}  {1,3}  {1,3}  {1,3}
                {2,3}  {1,4}  {1,4}  {1,4}
                       {2,3}  {1,5}  {1,5}
                       {2,4}  {2,3}  {1,6}
                       {3,4}  {2,4}  {2,3}
                              {2,5}  {2,4}
                              {3,4}  {2,5}
                              {3,5}  {2,6}
                              {4,5}  {3,4}
                                     {3,5}
                                     {3,6}
                                     {4,5}
                                     {4,6}
                                     {5,6}
		

Crossrefs

The version without subtracting one is A357812.
Dominates A370641, see also A370640.
A007318 counts subsets by cardinality.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    Table[If[n==0,0,Binomial[n-1,IntegerLength[n,2]-1]],{n,0,15}]

Formula

a(n) = binomial(n - 1, A029837(n+1) - 1) = binomial(n - 1, A113473(n) - 1) = binomial(n - 1, A070939(n) - 1) for n > 0.
Previous Showing 61-65 of 65 results.