cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A369172 Irregular triangle read by rows: row n lists the lengths of the strings of the MIU formal system at the n-th level of the tree generated by recursively applying the system rules, starting from the MI string.

Original entry on oeis.org

2, 3, 3, 5, 4, 5, 9, 7, 6, 9, 3, 3, 17, 13, 11, 4, 4, 10, 17, 7, 7, 7, 7, 7, 7, 4, 5, 5, 33, 25, 21, 9, 9, 9, 9, 7, 7, 2, 19, 8, 8, 8, 8, 8, 8, 18, 33, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 8, 13, 5, 5, 5, 8, 13, 5, 5, 8, 13, 5, 8, 13, 5, 8, 13, 5, 5, 13, 5, 5, 5, 7, 6, 9, 9
Offset: 0

Views

Author

Paolo Xausa, Jan 15 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and the triangle of corresponding strings.

Examples

			Triangle begins:
  [0]  2;
  [1]  3  3;
  [2]  5  4  5;
  [3]  9  7  6  9  3  3;
  [4] 17 13 11  4  4 10 17  7  7  7  7  7  7  4  5  5;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A055642, A368946, A368947 (row lengths), A369206, A369207.

Programs

  • Mathematica
    MIUStepOW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, "111" -> "0"], StringReplaceList[#, "00" -> ""]}&, s]];
    With[{rowmax = 5}, StringLength[NestList[MIUStepOW3, {"1"}, rowmax]]] + 1

Formula

T(n,k) = A055642(A368946(n,k)).
T(n,k) = A369206(n,k) + A369207(n,k) + 1.

A369206 Irregular triangle read by rows: row n lists the number of U characters for each of the strings of the MIU formal system at the n-th level of the tree generated by recursively applying the system rules, starting from the MI string.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 1, 1, 8, 4, 2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 16, 8, 4, 3, 3, 3, 3, 4, 4, 0, 2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 4, 4
Offset: 0

Views

Author

Paolo Xausa, Jan 16 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and the triangle of corresponding strings.

Examples

			Triangle begins:
  [0] 0;
  [1] 1 0;
  [2] 2 1 0;
  [3] 4 2 1 0 1 1;
  [4] 8 4 2 2 2 1 0 1 1 1 1 1 1 2 2 2;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A055641, A368946, A368947 (row lengths), A369172, A369207 (number of ones).

Programs

  • Mathematica
    MIUStepOW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, "111" -> "0"], StringReplaceList[#, "00" -> ""]}&, s]];
    With[{rowmax = 5}, Map[StringCount[#, "0"]&, NestList[MIUStepOW3, {"1"}, rowmax]]]

Formula

T(n,k) = A055641(A368946(n,k)).
T(n,k) = A369172(n,k) - A369207(n,k) - 1.

A369207 Irregular triangle read by rows: row n lists the number of I characters for each of the strings of the MIU formal system at the n-th level of the tree generated by recursively applying the system rules, starting from the MI string.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 4, 4, 4, 8, 1, 1, 8, 8, 8, 1, 1, 8, 16, 5, 5, 5, 5, 5, 5, 1, 2, 2, 16, 16, 16, 5, 5, 5, 5, 2, 2, 1, 16, 5, 5, 5, 5, 5, 5, 16, 32, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 5, 10, 2, 2, 2, 5, 10, 2, 2, 5, 10, 2, 5, 10, 2, 5, 10, 2, 2, 10, 2, 2, 2, 2, 2, 4, 4
Offset: 0

Views

Author

Paolo Xausa, Jan 16 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and the triangle of corresponding strings.

Examples

			Triangle begins:
  [0] 1;
  [1] 1 2;
  [2] 2 2 4;
  [3] 4 4 4 8 1 1;
  [4] 8 8 8 1 1 8 16 5 5 5 5 5 5 1 2 2;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A268643, A368946, A368947 (row lengths), A369172, A369206 (number of zeros).

Programs

  • Mathematica
    MIUStepOW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, "111" -> "0"], StringReplaceList[#, "00" -> ""]}&, s]];
    With[{rowmax = 5}, Map[StringCount[#, "1"]&, NestList[MIUStepOW3, {"1"}, rowmax]]]

Formula

T(n,k) = A268643(A368946(n,k)).
T(n,k) = A369172(n,k) - A369206(n,k) - 1.

A369174 Irregular triangle read by rows: row n lists the number of U characters for each of the distinct derivable strings in the MIU formal system that are n characters long.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 1, 2, 1, 1, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 0, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 1, 4, 3, 3, 3, 1, 3, 1, 1, 1, 0, 5, 5, 4, 5, 4, 4, 5, 4, 4, 4, 2, 5, 4, 4, 4, 2, 4, 2, 2, 2, 1, 5, 4, 4, 4, 2, 4, 2, 2, 2, 1, 4, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1
Offset: 2

Views

Author

Paolo Xausa, Jan 15 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A369173 for the triangle of the corresponding derivable strings.

Examples

			Triangle begins:
  [2] 0;
  [3] 1 1 0;
  [4] 2 2 1 2 1 1;
  [5] 3 3 2 3 2 2 3 2 2 2 0;
  [6] 4 4 3 4 3 3 4 3 3 3 1 4 3 3 3 1 3 1 1 1 0;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A024495 (row lengths), A055641, A368946, A369173, A369179 (number of ones).

Programs

  • Mathematica
    A369174row[n_] := n - 1 - Select[Map[Count[#, 1]&, Tuples[{0, 1}, n - 1]], !Divisible[#, 3]&]; Array[A369174row, 6, 2]

Formula

T(n,k) = A055641(A369173(n,k)).
T(n,k) = n - 1 - A369179(n,k).

A369179 Irregular triangle read by rows: row n lists the number of I characters for each of the distinct derivable strings in the MIU formal system that are n characters long.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 2, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5
Offset: 2

Views

Author

Paolo Xausa, Jan 16 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A369173 for the triangle of the corresponding derivable strings.

Examples

			Triangle begins:
  [2] 1;
  [3] 1 1 2;
  [4] 1 1 2 1 2 2;
  [5] 1 1 2 1 2 2 1 2 2 2 4;
  [6] 1 1 2 1 2 2 1 2 2 2 4 1 2 2 2 4 2 4 4 4 5;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A024495 (row lengths), A268643, A368946, A369173, A369174 (number of zeros).

Programs

  • Mathematica
    A369179row[n_] := Select[Map[Count[#, 1]&, Tuples[{0, 1}, n - 1]], !Divisible[#, 3]&]; Array[A369179row, 6, 2]

Formula

T(n,k) = A268643(A369173(n,k)).
T(n,k) = n - 1 - A369174(n,k).
T(n,k) mod 3 > 0.

A368954 Row lengths of A368953: in the MIU formal system, number of distinct strings n steps distant from the MI string.

Original entry on oeis.org

1, 2, 3, 6, 15, 48, 232, 1544, 14959, 203333, 3919437, 105126522
Offset: 0

Views

Author

Paolo Xausa, Jan 10 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A368953 for the variant where duplicates within a row are removed.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Programs

  • Mathematica
    MIUStepDW3[s_] := DeleteDuplicates[Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, {"111" -> "0","00" -> ""}]}&, s]]];
    With[{rowmax = 9}, Map[Length, NestList[MIUStepDW3, {"1"}, rowmax]]]
  • Python
    from itertools import islice
    def occurrence_swaps(w, s, t):
        out, oi = [], w.find(s)
        while oi != -1:
            out.append(w[:oi] + t + w[oi+len(s):])
            oi = w.find(s, oi+1)
        return out
    def moves(w): # moves for word w in MIU system, encoded as 310
        nxt = []
        if w[-1] == '1': nxt.append(w + '0')        # Rule 1
        if w[0] == '3': nxt.append(w + w[1:])       # Rule 2
        nxt.extend(occurrence_swaps(w, '111', '0')) # Rule 3
        nxt.extend(occurrence_swaps(w, '00', ''))   # Rule 4
        return nxt
    def agen(): # generator of terms
        frontier = {'31'}
        while len(frontier) > 0:
            yield len(frontier)
            reach1 = set(m for p in frontier for m in moves(p))
            frontier, reach1 = reach1, set()
    print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 14 2024

Formula

a(n) <= A368947(n).

Extensions

a(10)-a(11) from Michael S. Branicky, Jan 14 2024

A369412 Maximum length of a "normal" proof (see comments) for strings (theorems) in the MIU formal system that are n characters long.

Original entry on oeis.org

1, 4, 13, 11, 18, 16, 25, 23, 24, 22, 26, 24, 34, 32, 33, 31, 35, 33, 34, 32, 39, 37, 49
Offset: 2

Views

Author

Paolo Xausa, Jan 23 2024

Keywords

Comments

See A368946 for the description of the MIU formal system, A369410 for the triangle of the corresponding proof lengths and A369409 for the definition of "normal" proof.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Programs

  • Mathematica
    MIUDigitsW3[n_] := Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&];
    MIUProofLineCount[t_] := Module[{c = Count[t, 0], ni}, ni = Length[t] + 2*c; While[ni > 1, If[OddQ[ni], ni = (ni+3)/2; c += 4, ni/=2; c++]]; c+1];
    Map[Max, Map[MIUProofLineCount, Array[MIUDigitsW3, 15, 2], {2}]]

Formula

a(n) = max_{k=1..A024495(n)} A369410(n,k).

A369413 Maximum number of symbols of a "normal" proof (see comments) for strings (theorems) in the MIU formal system that are n characters long.

Original entry on oeis.org

2, 13, 94, 75, 165, 139, 308, 269, 348, 299, 482, 423, 647, 581, 780, 701, 893, 807, 1064, 965, 1281, 1175, 1654
Offset: 2

Views

Author

Paolo Xausa, Jan 23 2024

Keywords

Comments

See A368946 for the description of the MIU formal system, A369411 for the triangle of the corresponding symbol lengths and A369409 for the definition of "normal" proof.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Programs

  • Mathematica
    MIUDigitsW3[n_] := Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&];
    MIUProofSymbolCount[t_] := Module[{c = Length[t], nu = Count[t,0], ni}, ni = 2*nu+c; c += nu(nu+c+2); While[ni > 1, If[OddQ[ni], c += (7*ni+3)/2 + 13; ni = (ni+3)/2, c += ni/2 + 1; ni/=2]]; c+1];
    Map[Max, Map[MIUProofSymbolCount, Array[MIUDigitsW3, 15, 2], {2}]]

Formula

a(n) = max_{k=1..A024495(n)} A369411(n,k).

A369414 Irregular triangle read by rows: row n lists the values of the vertices at the n-th level of the MI graph (see comments).

Original entry on oeis.org

1, 2, 4, 8, 5, 16, 13, 10, 7, 32, 29, 26, 23, 20, 17, 14, 11, 64, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 128, 125, 122, 119, 116, 113, 110, 107, 104, 101, 98, 95, 92, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35
Offset: 0

Views

Author

Paolo Xausa, Jan 24 2024

Keywords

Comments

The vertices of the graph consist of all of the positive integers that are not divisible by 3. A vertex v (for v >= 4) has 2*v as left child and 2*v - 3 as right child (see example).
Matos and Antunes (1998) use this graph to illustrate the fact that, for a string (theorem) S belonging to the MIU formal system containing no U characters, the length of the path from vertex v (where v is the number of I characters in S) to the root corresponds to the number of times step 2 of their algorithm for generating "normal" proofs (described in A369409) is applied.
See A368946 for the description of the MIU formal system.

Examples

			The first levels of the graph are shown below. Cf. Matos and Antunes (1998), p. 7, figure 1.
                           +--1
                           |
                        +--2
                        |
            +-----------4-----------+
            |                       |
      +-----8-----+           +-----5-----+
      |           |           |           |
   +-16--+     +-13--+     +-10--+     +--7--+
   |     |     |     |     |     |     |     |
  32    29    26    23    20    17    14    11
                       ...
Written as an irregular triangle, the sequence begins:
  [0]  1;
  [1]  2;
  [2]  4;
  [3]  8  5;
  [4] 16 13 10  7;
  [5] 32 29 26 23 20 17 14 11;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Cf. A000079 (first column and, for n >= 2, row lengths), A062709 (right border, for n >= 2).
Permutation of A001651.

Programs

  • Mathematica
    A369414row[n_] := If[n <= 1, {n+1}, Range[2^n, 3+2^(n-2), -3]];
    Array[A369414row, 8, 0]

Formula

T(n,1) = n + 1 for n < 2.
T(n,k) = 2^n - 3*(k-1) for n >= 2 and 1 <= k <= 2^(n-2).

A369148 In the MIU formal system, total number (including duplicates) of strings up to n steps distant from the MI string.

Original entry on oeis.org

1, 3, 6, 12, 28, 88, 444, 3671, 47981, 976631, 29554002, 1326494644
Offset: 0

Views

Author

Paolo Xausa, Jan 14 2024

Keywords

Comments

See A368946 for the description of the MIU formal system.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Cf. A331536 (without duplicates), A368946, A369173 (all MIU strings).
Partial sums of A368947.

Programs

  • Mathematica
    MIUStepW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, {"111" -> "0", "00" -> ""}]}&, s]];
    With[{rowmax = 9}, Accumulate[Map[Length, NestList[MIUStepW3, {"1"}, rowmax]]]]

Formula

a(n) >= A331536(n+1).
Previous Showing 11-20 of 20 results.