cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A374520 Numbers k such that the leaders of maximal anti-runs in the k-th composition in standard order (A066099) are not identical.

Original entry on oeis.org

11, 19, 23, 26, 35, 39, 43, 46, 47, 53, 58, 67, 71, 74, 75, 78, 79, 83, 87, 91, 92, 93, 94, 95, 100, 106, 107, 117, 122, 131, 135, 138, 139, 142, 143, 147, 149, 151, 154, 155, 156, 157, 158, 159, 163, 164, 167, 171, 174, 175, 179, 183, 184, 185, 186, 187, 188
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with corresponding compositions begins:
  11: (2,1,1)
  19: (3,1,1)
  23: (2,1,1,1)
  26: (1,2,2)
  35: (4,1,1)
  39: (3,1,1,1)
  43: (2,2,1,1)
  46: (2,1,1,2)
  47: (2,1,1,1,1)
  53: (1,2,2,1)
  58: (1,1,2,2)
  67: (5,1,1)
  71: (4,1,1,1)
  74: (3,2,2)
  75: (3,2,1,1)
  78: (3,1,1,2)
  79: (3,1,1,1,1)
  83: (2,3,1,1)
  87: (2,2,1,1,1)
  91: (2,1,2,1,1)
		

Crossrefs

For leaders of maximal constant runs we have the complement of A272919.
Positions of non-constant rows in A374515.
The complement is A374519, counted by A374517.
For distinct instead of identical leaders we have A374639, counted by A374678, complement A374638, counted by A374518.
Compositions of this type are counted by A374640.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!SameQ@@First/@Split[stc[#],UnsameQ]&]

A375396 Numbers not divisible by the square of any prime factor except (possibly) the least. Hooklike numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2024

Keywords

Comments

Also numbers k such that the minima of the maximal anti-runs in the weakly increasing sequence of prime factors of k (with multiplicity) are identical. Here, an anti-run is a sequence with no adjacent equal parts, and the minima of the maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each. Note the prime factors can alternatively be taken in weakly decreasing order.
The complement is a superset of A036785 = products of a squarefree number and a prime power.
The asymptotic density of this sequence is (1/zeta(2)) * (1 + Sum_{p prime} (1/(p^2-p)) / Product_{primes q <= p} (1 + 1/q)) = 0.884855661165... . - Amiram Eldar, Oct 26 2024

Examples

			The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs {{2},{2,3,5},{5}}, with minima (2,2,5), so 300 is not in the sequence.
		

Crossrefs

The complement is a superset of A036785.
For maxima instead of minima we have A065200, counted by A034296.
The complement for maxima is A065201, counted by A239955.
Partitions of this type are counted by A115029.
A version for compositions is A374519, counted by A374517.
Also positions of identical rows in A375128, sums A374706, ranks A375400.
The complement is A375397, counted by A375405.
For distinct instead of identical minima we have A375398, counts A375134.
The complement for distinct minima is A375399, counted by A375404.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A011782 comps counts compositions.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.
See the formula section for the relationships with A005117, A028234.

Programs

  • Mathematica
    Select[Range[100],SameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]
  • PARI
    is(k) = if(k > 1, my(e = factor(k)[, 2]); vecprod(e) == e[1], 1); \\ Amiram Eldar, Oct 26 2024

Formula

{a(n)} = {k >= 1 : A028234(k) is in A005117}. - Peter Munn, May 09 2025

A374516 Sum of leaders of maximal anti-runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 1, 3, 4, 3, 4, 3, 1, 1, 2, 4, 5, 4, 3, 4, 2, 4, 2, 4, 1, 1, 3, 2, 2, 2, 3, 5, 6, 5, 4, 5, 6, 3, 3, 5, 2, 2, 6, 5, 2, 2, 3, 5, 1, 1, 1, 2, 1, 3, 1, 3, 2, 2, 4, 3, 3, 3, 4, 6, 7, 6, 5, 6, 4, 4, 4, 6, 3, 6, 5, 4, 3, 3, 4, 6, 2, 2, 2, 3, 4, 6, 4
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1), with maximal anti-runs ((3,2,1,2),(2,1,2,5,1),(1),(1)), so a(1234567) is 3 + 2 + 1 + 1 = 7.
		

Crossrefs

For length instead of sum we have A333381.
Row-sums of A374515.
Other types of runs (instead of anti-):
- For identical runs we have A373953, row-sums of A374251.
- For weakly increasing runs we have A374630, row-sums of A374629.
- For strictly increasing runs we have A374684, row-sums of A374683.
- For weakly decreasing runs we have A374741, row-sums of A374740.
- For strictly decreasing runs we have A374758, row-sums of A374757.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],UnsameQ]],{n,0,100}]

A374521 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of anti-runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 1, 1, 2, 0, 2, 1, 2, 3, 0, 2, 5, 3, 4, 2, 0, 5, 7, 8, 3, 5, 4, 0, 9, 12, 11, 17, 5, 8, 2, 0, 14, 26, 23, 22, 24, 6, 9, 4, 0, 25, 42, 54, 41, 36, 36, 7, 12, 3, 0, 46, 76, 88, 107, 60, 60, 48, 9, 14, 4
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			Triangle begins:
   1
   0   1
   0   0   2
   0   1   1   2
   0   2   1   2   3
   0   2   5   3   4   2
   0   5   7   8   3   5   4
   0   9  12  11  17   5   8   2
   0  14  26  23  22  24   6   9   4
   0  25  42  54  41  36  36   7  12   3
   0  46  76  88 107  60  60  48   9  14   4
   0  78 144 166 179 176 101  83  68  10  17   2
   0 136 258 327 339 311 299 139 122  81  12  18   6
   0 242 457 602 704 591 544 447 198 165 109  12  23   2
Row n = 6 counts the following compositions:
  .  (15)    (24)    (321)    (42)     (51)     (6)
     (141)   (114)   (312)    (1122)   (411)    (33)
     (132)   (231)   (1113)   (11112)  (3111)   (222)
     (123)   (213)   (2112)            (2211)   (111111)
     (1212)  (1311)  (1221)            (21111)
             (1131)  (12111)
             (2121)  (11211)
                     (11121)
		

Crossrefs

Column n = k is A000005, except a(0) = 1.
Row-sums are A011782.
Column k = 1 is A096569.
For length instead of sum we have A106356.
The corresponding rank statistic is A374516, row-sums of A374515.
For identical leaders we have A374517, ranks A374519.
For distinct leaders we have A374518, ranks A374638.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A373949.
- For leaders of weakly increasing runs we have A374637.
- For leaders of strictly increasing runs we have A374700.
- For leaders of weakly decreasing runs we have A374748.
- For leaders of strictly decreasing runs we have A374766.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,UnsameQ]]==k&]],{n,0,15},{k,0,n}]

A374639 Numbers k such that the leaders of maximal anti-runs in the k-th composition in standard order (A066099) are not distinct.

Original entry on oeis.org

3, 7, 10, 14, 15, 21, 23, 27, 28, 29, 30, 31, 36, 39, 42, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 73, 79, 84, 85, 86, 87, 90, 94, 95, 99, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  14: (1,1,2)
  15: (1,1,1,1)
  21: (2,2,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

First differs from A335466 in lacking 166, complement A335467.
The complement for leaders of identical runs is A374249, counted by A274174.
For leaders of identical runs we have A374253, counted by A335548.
Positions of non-distinct (or non-strict) rows in A374515.
The complement is A374638, counted by A374518.
For identical instead of non-distinct we have A374519, counted by A374517.
For identical instead of distinct we have A374520, counted by A374640.
Compositions of this type are counted by A374678.
Other functional neighbors are A374768, A374698, A374701, A374767.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@First/@Split[stc[#],UnsameQ]&]

A374766 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of maximal strictly decreasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 8, 7, 0, 0, 0, 1, 3, 17, 11, 0, 0, 0, 0, 4, 10, 35, 15, 0, 0, 0, 0, 1, 12, 28, 65, 22, 0, 0, 0, 0, 1, 6, 31, 70, 118, 30, 0, 0, 0, 0, 1, 3, 22, 78, 163, 203, 42, 0, 0, 0, 0, 0, 4, 13, 69, 186, 354, 342, 56
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Are the column-sums finite?

Examples

			Triangle begins:
   1
   0   1
   0   0   2
   0   0   1   3
   0   0   0   3   5
   0   0   0   1   8   7
   0   0   0   1   3  17  11
   0   0   0   0   4  10  35  15
   0   0   0   0   1  12  28  65  22
   0   0   0   0   1   6  31  70 118  30
   0   0   0   0   1   3  22  78 163 203  42
   0   0   0   0   0   4  13  69 186 354 342  56
Row n = 6 counts the following compositions:
  .  .  .  (321)  (42)    (51)     (6)
                  (132)   (411)    (15)
                  (2121)  (141)    (24)
                          (312)    (114)
                          (231)    (33)
                          (213)    (123)
                          (3111)   (1113)
                          (1311)   (222)
                          (1131)   (1122)
                          (2211)   (11112)
                          (2112)   (111111)
                          (1221)
                          (1212)
                          (21111)
                          (12111)
                          (11211)
                          (11121)
		

Crossrefs

Column n = k is A000041.
Row-sums are A011782.
For length instead of sum we have A333213.
The corresponding rank statistic is A374758, row-sums of A374757.
For identical leaders we have A374760, ranks A374759.
For distinct leaders we have A374761, ranks A374767.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of weakly increasing runs we have A374637.
- For leaders of strictly increasing runs we have A374700.
- For leaders of weakly decreasing runs we have A374748.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,Greater]]==k&]], {n,0,15},{k,0,n}]

A374699 Number of integer compositions of n whose leaders of maximal anti-runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 14, 34, 78, 180, 407, 907, 2000, 4364, 9448, 20323, 43448, 92400, 195604, 412355, 866085, 1813035, 3783895, 7875552
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 0 through a(8) = 14 compositions:
  .  .  .  .  .  (122)  (1122)  (133)    (233)
                        (1221)  (1222)   (1133)
                                (11122)  (1223)
                                (11221)  (1322)
                                (12211)  (1331)
                                         (11222)
                                         (12122)
                                         (12212)
                                         (12221)
                                         (21122)
                                         (111122)
                                         (111221)
                                         (112211)
                                         (122111)
		

Crossrefs

The complement is counted by A374682.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A056823.
- For leaders of weakly increasing runs we have A374636, complement A189076?
- For leaders of strictly increasing runs: A375135, complement A374697.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
- For distinct leaders we have A374678, ranks A374639, complement A374518, ranks A374638.
- For weakly increasing leaders we have complement A374681.
- For strictly increasing leaders we have complement complement A374679.
- For strictly decreasing leaders we have complement A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A333381 counts maximal anti-runs in standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A373420 Number of Carlitz compositions of n (see A003242) such that the first and last parts are equal.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 7, 11, 17, 26, 54, 86, 155, 272, 464, 816, 1447, 2507, 4400, 7706, 13456, 23570, 41293, 72212, 126394, 221282, 387219, 677714, 1186311, 2076170, 3633761, 6360219, 11131698, 19483066, 34100455, 59683664, 104460655, 182832044, 319999739
Offset: 0

Views

Author

John Tyler Rascoe, Aug 16 2024

Keywords

Examples

			a(7) = 7 counts: (1,2,1,2,1), (1,2,3,1), (1,3,2,1), (1,5,1), (2,3,2), (3,1,3), and (7).
		

Crossrefs

Programs

  • PARI
    C_x(N) = {my(g=1/(1-sum(k=1, N, x^k/(1+x^k))));g}
    A_x(i,N) = {my( x='x+O('x^N), f=(x^i)*(C_x(N)*(x^i)+x^i+1)/(1+x^i)^2);f}
    D_x(N) = {my( x='x+O('x^N), f=1+sum(i=1,N, A_x(i,N))); Vec(f)}
    D_x(40)

Formula

G.f.: 1 + Sum_{i>0} (x^i)*(C(x)*(x^i) + x^i + 1)/(1+x^i)^2 where C(x) is the g.f. for A003242.
Previous Showing 21-28 of 28 results.