cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A374638 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 33, 34, 35, 37, 38, 40, 41, 44, 45, 46, 48, 49, 50, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 92, 93, 96, 97, 98, 100, 101, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  11: (2,1,1)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374515.
Compositions of this type are counted by A374518.
For identical instead of distinct we have A374519, counted by A374517.
The complement is A374639.
Other types of runs (instead of anti-):
- For identical runs we have A374249, counted by A274174.
- For weakly increasing runs we have A374768, counted by A374632.
- For strictly increasing runs we have A374698, counted by A374687.
- For weakly decreasing runs we have A374701, counted by A374743.
- For strictly decreasing runs we have A374767, counted by A374761.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],UnsameQ]&]

A374519 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 76, 77, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2), so 346 is in the sequence.
		

Crossrefs

Positions of constant rows in A374515.
Compositions of this type are counted by A374517.
The complement is A374520.
For distinct instead of identical leaders we have A374638, counted by A374518.
Other types of runs (instead of anti-):
- For identical runs we have A272919, counted by A000005.
- For weakly increasing runs we have A374633, counted by A374631.
- For strictly increasing runs we have A374685, counted by A374686.
- For weakly decreasing runs we have A374744, counted by A374742.
- For strictly decreasing runs we have A374759, counted by A374760.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],UnsameQ]&]

A374743 Number of integer compositions of n whose leaders of weakly decreasing runs are distinct.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 105, 198, 371, 690, 1280, 2364, 4353, 7981, 14568, 26466, 47876, 86264, 154896, 277236, 494675, 879924, 1560275, 2757830, 4859010, 8534420, 14945107, 26096824, 45446624, 78939432, 136773519, 236401194, 407614349, 701147189, 1203194421
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition (1,3,1,4,1,2,2,1) has maximal weakly decreasing subsequences ((1),(3,1),(4,1),(2,2,1)), with leaders (1,3,4,2), so is counted under a(15).
The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

Ranked by A374701 = positions of distinct rows in A374740, opposite A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A274174, ranks A374249.
- For leaders of anti-runs we have A374518, ranks A374638.
- For leaders of weakly increasing runs we have A374632, ranks A374768.
- For leaders of strictly increasing runs we have A374687, ranks A374698.
- For leaders of strictly decreasing runs we have A374761, ranks A374767.
Types of run-leaders (instead of distinct):
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742.
- For strictly increasing leaders we have opposite A374634.
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}]

Extensions

a(24)-a(36) from Alois P. Heinz, Jul 26 2024

A374637 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of weakly increasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 2, 0, 3, 2, 1, 2, 0, 5, 4, 3, 1, 3, 0, 7, 10, 7, 3, 1, 4, 0, 11, 19, 14, 9, 4, 2, 5, 0, 15, 39, 27, 22, 10, 7, 2, 6, 0, 22, 69, 59, 48, 24, 15, 8, 3, 8, 0, 30, 125, 117, 104, 56, 38, 19, 10, 3, 10, 0, 42, 211, 241, 215, 132, 80, 49, 25, 12, 5, 12
Offset: 0

Views

Author

Gus Wiseman, Jul 23 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   0   2
   0   3   2   1   2
   0   5   4   3   1   3
   0   7  10   7   3   1   4
   0  11  19  14   9   4   2   5
   0  15  39  27  22  10   7   2   6
   0  22  69  59  48  24  15   8   3   8
   0  30 125 117 104  56  38  19  10   3  10
   0  42 211 241 215 132  80  49  25  12   5  12
   0  56 354 473 445 296 186 109  61  31  17   5  15
   0  77 571 917 896 665 409 258 139  78  41  20   7  18
Row n = 6 counts the following compositions:
  .  (15)      (24)     (33)     (312)   (411)  (6)
     (114)     (141)    (231)    (3111)         (51)
     (123)     (1311)   (213)    (2121)         (42)
     (1113)    (1131)   (132)                   (321)
     (1122)    (222)    (2211)
     (11112)   (1221)   (2112)
     (111111)  (1212)   (21111)
               (12111)
               (11211)
               (11121)
		

Crossrefs

Last column n = k is A000009.
Second column k = 2 is A000041.
Row-sums are A011782.
For length instead of sum we have A238343.
The corresponding rank statistic is A374630, row-sums of A374629.
Types of runs (instead of weakly increasing):
- For leaders of constant runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of strictly increasing runs we have A374700.
- For leaders of weakly decreasing runs we have A374748.
- For leaders of strictly decreasing runs we have A374766.
Types of run-leaders:
- For strictly decreasing leaders we appear to have A188920.
- For weakly decreasing leaders we appear to have A189076.
- For identical leaders we have A374631.
- For distinct leaders we have A374632, ranks A374768.
- For strictly increasing leaders we have A374634.
- For weakly increasing leaders we have A374635.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,LessEqual]]==k&]],{n,0,15},{k,0,n}]

A374701 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

First differs from A335469 in having 150, which corresponds to the composition (3,2,1,2).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1257th composition in standard order are ((3,1,1),(2),(3,1)), with leaders (3,2,3), so 1257 is not in the sequence.
		

Crossrefs

Positions of distinct (strict) rows in A374740, opposite A374629.
Compositions of this type are counted by A374743.
For identical leaders we have A374744, counted by A374742.
Other types of runs and their counts: A374249 (A274174), A374638 (A374518), A374698 (A374687), A374767 (A374761), A374768 (A374632).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],GreaterEqual]&] (* Gus Wiseman, Jul 24 2024 *)

A294617 Number of ways to choose a set partition of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2017

Keywords

Comments

From Gus Wiseman, Sep 17 2024: (Start)
Also the number of strict integer compositions of n whose leaders, obtained by splitting into maximal increasing subsequences and taking the first term of each, are decreasing. For example, the strict composition (3,6,2,1,4) has maximal increasing subsequences ((3,6),(2),(1,4)), with leaders (3,2,1), so is counted under a(16). The a(0) = 1 through a(7) = 12 compositions are:
() (1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(2,1,3) (6,1)
(2,3,1) (1,2,4)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(4,1,2)
(4,2,1)
(End)

Examples

			The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
		

Crossrefs

Row sums of A330460 and of A330759.
This is a strict case of A374689, weak version A189076.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, combinat[bell](t), b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(n-i, i-1), t+1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 07 2017
  • Mathematica
    Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

A279375(n) <= a(n) <= A279790(n).
G.f.: Sum_{k>=0} Bell(k) * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020

A374679 Number of integer compositions of n whose leaders of anti-runs are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 15, 24, 45, 84, 142, 256, 464, 817, 1464, 2621, 4649, 8299, 14819, 26389, 47033, 83833, 149325, 266011, 473867, 843853
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 15 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                             (41)   (51)
                             (122)  (123)
                             (131)  (132)
                             (212)  (141)
                                    (213)
                                    (231)
                                    (312)
                                    (321)
                                    (1212)
                                    (1221)
                                    (2121)
		

Crossrefs

For distinct but not necessarily increasing leaders we have A374518.
For partitions instead of compositions we have A375134.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A374634.
- For leaders of strictly increasing runs we have A374688.
- For leaders of strictly decreasing runs we have A374762.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374517.
- For distinct leaders we have A374518.
- For weakly increasing leaders we have A374681.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A375127 The anti-run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 1, 7, 8, 4, 10, 5, 1, 1, 3, 15, 16, 8, 4, 9, 2, 10, 2, 11, 1, 1, 6, 3, 3, 3, 7, 31, 32, 16, 8, 17, 36, 4, 4, 19, 2, 2, 42, 21, 2, 2, 5, 23, 1, 1, 1, 3, 1, 6, 1, 7, 3, 3, 14, 7, 7, 7, 15, 63, 64, 32, 16, 33, 8, 8, 8, 35, 4, 36, 18, 9, 4, 4, 9
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of anti-runs of the n-th composition in standard order.
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Does this sequence contain all nonnegative integers?

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2). This is the 42nd composition in standard order, so a(346) = 42.
		

Crossrefs

Positions of elements of A233564 are A374638, counted by A374518.
Positions of elements of A272919 are A374519, counted by A374517.
Ranks of rows of A374515.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transform is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],UnsameQ]],{n,0,100}]

Formula

A000120(a(n)) = A333381(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374516(n).

A375134 Number of integer partitions of n whose maximal anti-runs have distinct minima.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 8, 11, 12, 18, 21, 28, 33, 43, 52, 66, 78, 98, 116, 145, 171, 209, 247, 300, 352, 424, 499, 595, 695, 826, 963, 1138, 1322, 1553, 1802, 2106, 2435, 2835, 3271, 3795, 4365, 5046, 5792, 6673, 7641, 8778, 10030, 11490, 13099, 14968, 17030
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

These are partitions with no part appearing more than twice and with the least part appearing only once.
Also the number of reversed integer partitions of n whose maximal anti-runs have distinct minima.

Examples

			The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with minima (5,3,1), so y is counted under a(29).
The a(1) = 1 through a(9) = 11 partitions:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
            (12)  (13)  (14)   (15)   (16)   (17)    (18)
                        (23)   (24)   (25)   (26)    (27)
                        (122)  (123)  (34)   (35)    (36)
                                      (124)  (125)   (45)
                                      (133)  (134)   (126)
                                             (233)   (135)
                                             (1223)  (144)
                                                     (234)
                                                     (1224)
                                                     (1233)
		

Crossrefs

Includes all strict partitions A000009.
For identical instead of distinct leaders we have A115029.
A version for compositions instead of partitions is A374518, ranks A374638.
For minima instead of maxima we have A375133, ranks A375402.
These partitions have ranks A375398.
The complement is counted by A375404, ranks A375399.
A000041 counts integer partitions.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,(x^i)*prod(j=i+1,N-i,(1-x^(3*j))/(1-x^j)))); Vec(f)}
    A_x(51) \\ John Tyler Rascoe, Aug 21 2024

Formula

G.f.: 1 + Sum_{i>0} (x^i * Product_{j>i} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024

A374678 Number of integer compositions of n whose leaders of maximal anti-runs are not distinct.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 15, 32, 70, 144, 311, 653, 1354, 2820, 5850, 12054, 24810, 50923, 104206, 212841, 433919, 882930, 1793810, 3639248, 7373539, 14921986
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The anti-runs of y = (1,1,2,2) are ((1),(1,2),(2)) with leaders (1,1,2) so y is counted under a(6).
The a(0) = 0 through a(6) = 15 compositions:
  .  .  (11)  (111)  (22)    (113)    (33)
                     (112)   (221)    (114)
                     (1111)  (1112)   (222)
                             (1121)   (1113)
                             (1211)   (1122)
                             (2111)   (1131)
                             (11111)  (1311)
                                      (2211)
                                      (3111)
                                      (11112)
                                      (11121)
                                      (11211)
                                      (12111)
                                      (21111)
                                      (111111)
		

Crossrefs

For constant runs we have A335548, complement A274174, ranks A374249.
The complement is counted by A374518, ranks A374638.
For weakly increasing runs we have complement A374632, ranks A374768.
Compositions of this type are ranked by A374639.
For identical instead of distinct leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
A003242 counts anti-runs, ranks A333489.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]
Previous Showing 11-20 of 34 results. Next