cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A294617 Number of ways to choose a set partition of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2017

Keywords

Comments

From Gus Wiseman, Sep 17 2024: (Start)
Also the number of strict integer compositions of n whose leaders, obtained by splitting into maximal increasing subsequences and taking the first term of each, are decreasing. For example, the strict composition (3,6,2,1,4) has maximal increasing subsequences ((3,6),(2),(1,4)), with leaders (3,2,1), so is counted under a(16). The a(0) = 1 through a(7) = 12 compositions are:
() (1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(2,1,3) (6,1)
(2,3,1) (1,2,4)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(4,1,2)
(4,2,1)
(End)

Examples

			The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
		

Crossrefs

Row sums of A330460 and of A330759.
This is a strict case of A374689, weak version A189076.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, combinat[bell](t), b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(n-i, i-1), t+1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 07 2017
  • Mathematica
    Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

A279375(n) <= a(n) <= A279790(n).
G.f.: Sum_{k>=0} Bell(k) * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020

A374679 Number of integer compositions of n whose leaders of anti-runs are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 15, 24, 45, 84, 142, 256, 464, 817, 1464, 2621, 4649, 8299, 14819, 26389, 47033, 83833, 149325, 266011, 473867, 843853
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 15 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                             (41)   (51)
                             (122)  (123)
                             (131)  (132)
                             (212)  (141)
                                    (213)
                                    (231)
                                    (312)
                                    (321)
                                    (1212)
                                    (1221)
                                    (2121)
		

Crossrefs

For distinct but not necessarily increasing leaders we have A374518.
For partitions instead of compositions we have A375134.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A374634.
- For leaders of strictly increasing runs we have A374688.
- For leaders of strictly decreasing runs we have A374762.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374517.
- For distinct leaders we have A374518.
- For weakly increasing leaders we have A374681.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374744 Numbers k such that the leaders of weakly decreasing runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 22, 23, 31, 32, 33, 34, 35, 36, 37, 39, 42, 43, 45, 46, 47, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 79, 85, 86, 87, 90, 91, 93, 94, 95, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  11: (2,1,1)
  15: (1,1,1,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  31: (1,1,1,1,1)
		

Crossrefs

Other types of runs and their counts: A272919 (A000005), A374519 (A374517), A374685 (A374686), A374759 (A374760).
The opposite is A374633, counted by A374631.
For distinct (instead of identical) leaders we have A374701, count A374743.
Positions of constant rows in A374740, opposite A374629, cf. A374630.
Compositions of this type are counted by A374742.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],GreaterEqual]&]

A375124 Weakly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 1, 4, 2, 6, 1, 8, 4, 2, 2, 12, 6, 6, 1, 16, 8, 4, 4, 20, 2, 10, 2, 24, 12, 6, 6, 12, 6, 6, 1, 32, 16, 8, 8, 4, 4, 18, 4, 40, 20, 2, 2, 20, 10, 10, 2, 48, 24, 12, 12, 52, 6, 26, 6, 24, 12, 6, 6, 12, 6, 6, 1, 64, 32, 16, 16, 8, 8, 34, 8, 72, 4, 4, 4, 36
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of weakly decreasing runs in the n-th composition in standard order.
The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with weakly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374701, counted by A374743.
Positions of elements of A272919 are A374744, counted by A374742.
Ranks of rows of A374740.
The opposite version is A375123.
The strict version is A375126.
The strict opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

Formula

A000120(a(n)) = A124765(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374741(n).

A375125 Strictly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 1, 3, 3, 15, 16, 17, 18, 19, 2, 21, 5, 23, 1, 3, 6, 7, 3, 7, 7, 31, 32, 33, 34, 35, 36, 37, 9, 39, 2, 5, 42, 43, 5, 11, 11, 47, 1, 3, 6, 7, 1, 13, 3, 15, 3, 7, 14, 15, 7, 15, 15, 63, 64, 65, 66, 67, 68, 69, 17, 71, 4, 73
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly increasing runs in the n-th composition in standard order.
The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374698, counted by A374687.
Positions of elements of A272919 are A374685, counted by A374686.
Ranks of rows of A374683.
The weak version is A375123.
The weak opposite version is A375124.
The opposite version is A375126.
Other transformations: A375127, A373948.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Less]],{n,0,100}]

Formula

A000120(a(n)) = A124768(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374684(n).

A374636 Number of integer compositions of n whose leaders of maximal weakly increasing runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 10, 28, 72, 178, 425, 985, 2237, 4999, 11016, 24006, 51822, 110983, 236064, 499168, 1050118, 2199304, 4587946, 9537506, 19765213, 40847186, 84205453, 173198096, 355520217, 728426569, 1489977348, 3043054678, 6206298312, 12641504738
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2024

Keywords

Comments

The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed pattern 1-32, ranked by A375137.
Also the number of integer compositions of n matching the dashed pattern 23-1, ranked by A375138.

Examples

			- The maximal weakly increasing runs of y = (1,1,3,2,1) are ((1,1,3),(2),(1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (1,3,2,1,1) are ((1,3),(2),(1,1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (2,3,1,1,1) are ((2,3),(1,1,1)) with leaders (2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,3,2,1) are ((2,3),(2),(1)) with leaders (2,2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,1,3,1,1) are ((2),(1,3),(1,1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
- The maximal weakly increasing runs of y = (2,1,1,3,1) are ((2),(1,1,3),(1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
The a(0) = 0 through a(8) = 10 compositions:
  .  .  .  .  .  .  (132)  (142)   (143)
                           (1132)  (152)
                           (1321)  (1142)
                                   (1232)
                                   (1322)
                                   (1421)
                                   (2132)
                                   (11132)
                                   (11321)
                                   (13211)
		

Crossrefs

The reverse version is the same.
For leaders of identical runs we have A056823.
The complement is counted by A189076.
The non-dashed version is A335514.
For leaders of anti-runs we have A374699, complement A374682.
For weakly decreasing runs we have the complement of A374747.
For leaders of strictly increasing runs we have A375135, complement A374697.
These compositions are ranked by A375137, reverse A375138.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,LessEqual]&]],{n,0,15}]
    (* or *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,y_,z_,_,x_,_}/;x
    				

Formula

a(n) = A011782(n) - A189076(n). - Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A374689 Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing. The weakly decreasing version is A374697.

Examples

			The a(0) = 1 through a(8) = 21 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)
                (12)  (13)  (14)   (15)   (16)   (17)
                (21)  (31)  (23)   (24)   (25)   (26)
                            (32)   (42)   (34)   (35)
                            (41)   (51)   (43)   (53)
                            (212)  (123)  (52)   (62)
                                   (213)  (61)   (71)
                                   (231)  (124)  (125)
                                   (312)  (214)  (134)
                                   (321)  (241)  (215)
                                          (313)  (251)
                                          (412)  (314)
                                          (421)  (323)
                                                 (341)
                                                 (413)
                                                 (431)
                                                 (512)
                                                 (521)
                                                 (2123)
                                                 (2312)
                                                 (3212)
		

Crossrefs

The weak version appears to be A189076.
Ranked by positions of strictly decreasing rows in A374683.
The opposite version is A374762.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374680.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, Jul 29 2024

Formula

G.f.: Product_{i>0} (1 + (x^i)*Product_{j>i} (1 + x^j)). - John Tyler Rascoe, Jul 29 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 29 2024

A374741 Sum of leaders of weakly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 3, 1, 4, 3, 2, 2, 4, 3, 3, 1, 5, 4, 3, 3, 5, 2, 4, 2, 5, 4, 3, 3, 4, 3, 3, 1, 6, 5, 4, 4, 3, 3, 5, 3, 6, 5, 2, 2, 5, 4, 4, 2, 6, 5, 4, 4, 6, 3, 5, 3, 5, 4, 3, 3, 4, 3, 3, 1, 7, 6, 5, 5, 4, 4, 6, 4, 7, 3, 3, 3, 6, 5, 5, 3, 7, 6, 5, 5, 5, 2, 4
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so a(1234567) is 3+2+2+5 = 12.
		

Crossrefs

For length instead of sum we have A124765.
Other types of runs are A373953, A374516, A374684, A374758.
The opposite is A374630.
Row-sums of A374740, opposite A374629.
Counting compositions by this statistic gives A374748, opposite A374637.
A373949 counts compositions by run-compressed sum.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564, counted by A032020.
- Constant compositions are ranked by A272919.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],GreaterEqual]],{n,0,100}]

A374688 Number of integer compositions of n whose leaders of strictly increasing runs are themselves strictly increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 11, 16, 21, 31, 45, 63, 87, 122, 170, 238, 328, 449, 616, 844, 1151, 1565, 2121, 2861, 3855, 5183, 6953, 9299, 12407, 16513, 21935, 29078, 38468, 50793, 66935, 88037, 115577, 151473, 198175, 258852, 337560, 439507, 571355, 741631
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing.

Examples

			The a(0) = 1 through a(9) = 16 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
                (12)  (13)  (14)   (15)   (16)   (17)    (18)
                            (23)   (24)   (25)   (26)    (27)
                            (122)  (123)  (34)   (35)    (36)
                                   (132)  (124)  (125)   (45)
                                          (133)  (134)   (126)
                                          (142)  (143)   (135)
                                                 (152)   (144)
                                                 (233)   (153)
                                                 (1223)  (162)
                                                 (1232)  (234)
                                                         (243)
                                                         (1224)
                                                         (1233)
                                                         (1242)
                                                         (1323)
		

Crossrefs

The weak version is A374635.
Ranked by positions of strictly increasing rows in A374683 (sums A374684).
The opposite version is A374763.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374679.
- For leaders of weakly increasing runs we have A374634.
- For leaders of strictly decreasing runs we have A374762.
Types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly decreasing leaders we have A374689.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Less]&]],{n,0,15}]

Extensions

a(26) and beyond from Christian Sievers, Aug 08 2024

A374681 Number of integer compositions of n whose leaders of anti-runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 50, 96, 185, 353, 672, 1289, 2466, 4722, 9052, 17342, 33244, 63767, 122325, 234727, 450553, 864975, 1660951, 3190089, 6128033
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(5) = 14 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (1211)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
Other types of runs (instead of anti-):
- For leaders of constant runs we have A000041.
- For leaders of weakly decreasing runs we have A188900.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of strictly decreasing runs we have A374764.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]
Previous Showing 21-30 of 42 results. Next