cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A377117 a(n) = coefficient of the term that is independent of 2^(1/3) and 2^(2/3) in the expansion of (2^(1/3) + 2^(2/3))^n.

Original entry on oeis.org

1, 1, 4, 6, 24, 60, 180, 504, 1440, 4104, 11664, 33264, 94608, 269568, 767232, 2185056, 6220800, 17713728, 50435136, 143607168, 408893184, 1164253824, 3315002112, 9438882048, 26875535616, 76523304960, 217886505984, 620393043456, 1766458865664, 5029677296640
Offset: 0

Views

Author

Clark Kimberling, Oct 24 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 1,5,3,17,2,13 and these periods:
p = 2: (1)
p = 3: (1, 2, 8, 9, 4)
p = 5: (21, 9, 10)
p = 7: (8, 42, 7, 19, 1, 2, 10, 31, 4, 11, 6, 34, 60, 23, 5, 9, 16)
p = 11: (9, 21)
p = 13: (15, 51, 45, 1, 2, 17, 41, 28, 54, 119, 13, 9, 25)
See A377109 for a guide to related sequences.

Examples

			((2^(1/3) + 2^(2/3)))^3 = 4 + 2 2^(1/3) + 2^(2/3), so a(3) = 4.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377117-A377119. *)
    tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 24}];
    Take[tbl, 6]
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
    s1  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates (a(n)) for n>=1. *)
    LinearRecurrence[{0,6,6}, {1, 1, 4, 6, 24}, 15]
    (* Program 3 confirms the periodicity properties described in Comments. *)
    tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 1000}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    v = {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
    Position[Partition[list, Length[#], 1], Flatten[{_, #, _}]] &[seqtofind];
    period[seq_] := (If[Last[#1] == {} || Length[#1] == Length[seq] - 1, 0, Length[#1]] &)[NestWhileList[Rest, Rest[seq], #1 != Take[seq, Length[#1]] &, 1]];
    periodicityReport[seq_] := ({Take[seq, Length[seq] - Length[#1]], period[#1], Take[#1, period[#1]]} &)[Take[seq, -Length[NestWhile[Rest[#1] &, seq, period[#1] == 0 &, 1, Length[seq]]]]];
    seq = s1; Take[seq, 10]
    f[n_] := Flatten[Position[Mod[s1, Prime[n]], 0]];
    d[n_] := Differences[f[n]];
    Table[Take[f[n], 10], {n, 2, 4}]
    Table[Take[d[n], 10], {n, 2, 4}]
    Column[Table[{n, Prime[n], periodicityReport[d[Prime[n]]]}, {n, 1, 8}]]
    (* Peter J. C. Moses, Aug 07 2014, Oct 16 2024 *)

Formula

a(n) = 6*a(n-2) + 6*a(n-3) for n >= 5. [Corrected by Georg Fischer, Oct 29 2024]
G.f.: (-1 - x + 2 x^2 + 6 x^3 + 6 x^4)/(-1 + 6 x^2 + 6 x^3).

A377113 a(n) = coefficient of the term that is independent of sqrt(2), sqrt(3), and sqrt(6) in the expansion of (3 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

1, 3, 14, 72, 400, 2328, 13904, 84192, 513472, 3143232, 19278464, 118359552, 727045120, 4467233280, 27452300288, 168714381312, 1036914921472, 6372994560000, 39169586880512, 240744913207296, 1479676193996800, 9094462273585152, 55896907276156928
Offset: 0

Views

Author

Clark Kimberling, Oct 21 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 4 primes, with respective period lengths 1,5,9,7 and these periods:
p = 2: (2)
p = 3: (8, 1, 4, 3, 8)
p = 5: (12,12,1,6,4,1,5,7,12)
p = 7: (3,15,9,9,15,3,18)
See A377109 for a guide to related sequences.

Examples

			(3 + sqrt(2) + sqrt(3))^3 = 14 + 6*sqrt(2) + 6*sqrt(3) + 2*sqrt(6), so a(3) = 14.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377113-A377116. *)
    tbl = Table[Expand[(3 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1, s2, s3, s4} = Transpose[(PadRight[#1, 4] &) /@ Last /@ u][[1 ;; 4]];
    s1  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{12, -44, 48, 8}, {1, 3, 14, 72}, 15]
    (* Program 3 confirms the periodicity properties described in Comments. *)
    tbl = Table[Expand[(3 + Sqrt[2] + Sqrt[3])^n], {n, 0, 1000}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    v = {s1, s2, s3, s4} = Transpose[(PadRight[#1, 4] &) /@ Last /@ u][[1 ;; 4]];
    Position[Partition[list, Length[#], 1], Flatten[{_, #, _}]] &[
      seqtofind];
    period[seq_] := (If[Last[#1] == {} || Length[#1] == Length[seq] - 1,
          0, Length[#1]] &)[NestWhileList[Rest, Rest[seq], #1 != Take[seq, Length[#1]] &, 1]];
    periodicityReport[seq_] := ({Take[seq, Length[seq] - Length[#1]], period[#1],
          Take[#1, period[#1]]} &)[Take[seq, -Length[
          NestWhile[Rest[#1] &, seq, period[#1] == 0 &, 1, Length[seq]]]]];
    seq = s1; Take[seq, 10]
    f[n_] := Flatten[Position[Mod[s1, Prime[n]], 0]];
    d[n_] := Differences[f[n]];
    Table[Take[f[n], 10], {n, 2, 4}]
    Table[Take[d[n], 10], {n, 2, 4}]
    Column[Table[{n, Prime[n], periodicityReport[d[Prime[n]]]}, {n, 1, 8}]]
    (* Peter J. C. Moses, Aug 07 2014, Oct 16 2024 *)

Formula

a(n) = 12*a(n-1) - 44*a(n-2) + 48*a(n-3) + 8*a(n-4), with a(0)=1, a(1)=3, a(3)=14, a(4)=72.
G.f.: (-1 + 9 x - 22 x^2 + 12 x^3)/(-1 + 12 x - 44 x^2 + 48 x^3 + 8 x^4).

A188570 a(n) = coefficient of the term that is independent of sqrt(2) and sqrt(3) in the expansion of (1 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

1, 1, 6, 16, 80, 296, 1296, 5216, 21952, 90304, 375936, 1555456, 6456320, 26754560, 110963712, 460015616, 1907494912, 7908659200, 32792076288, 135963148288, 563742310400, 2337417887744, 9691567030272, 40183767891968, 166612591968256, 690819710058496
Offset: 0

Views

Author

Mateusz Szymański, Dec 28 2012

Keywords

Comments

From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 1,5,5,3,3,5 and these periods:
p = 2: (4)
p = 3: (8, 1, 4, 3, 8)
p = 5: (9, 10, 1, 20, 20)
p = 7: (9, 9, 18)
p = 11: (10, 11, 43)
p = 13: (7, 21, 21, 7, 28)
See A377109 for a guide to related sequences. (End)

Examples

			a(3) = 16 because (1+sqrt(2)+sqrt(3))^3 = 16 + 14*sqrt(2) + 12*sqrt(3) + 6*sqrt(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[2^(Floor[n/2] - k - j) 3^j Multinomial[2 k + n - 2 Floor[n/2], 2 j, 2 Floor[n/2] - 2 k - 2 j], {j, 0, Floor[n/2] - k}], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 25}]
    a[n_] := Expand[(1 + Sqrt[2] + Sqrt[3])^n] /. Sqrt[] -> 0; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover, Jan 08 2013 *)
    LinearRecurrence[{4,4,-16,8},{1,1,6,16},30] (* Harvey P. Dale, Jan 25 2019 *)

Formula

Recurrence: a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) + 8*a(n-4). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ (1+sqrt(3)+sqrt(2))^n/4. - Vaclav Kotesovec, Aug 13 2013

Extensions

Edited by Clark Kimberling, Oct 20 2024

A188571 a(n) = coefficient of sqrt(2) in the expansion of (1 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 1, 2, 14, 48, 224, 880, 3760, 15360, 64192, 265088, 1101440, 4561920, 18925568, 78447616, 325313536, 1348730880, 5592420352, 23187169280, 96141172736, 398624489472, 1652807303168, 6852965761024, 28414229807104, 117812861337600, 488483370827776
Offset: 0

Views

Author

Mateusz Szymański, Dec 28 2012

Keywords

Comments

From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 4,8,14,3,3,5 and these periods:
p = 2: (4)
p = 3: (6, 1, 1, 3, 1, 4, 2, 6)
p = 5: (6, 6, 6, 2, 4, 6, 1, 5, 4, 1, 1, 6, 6, 6)
p = 7: (9, 18, 9)
p = 11: (43, 10, 11)
p = 13: (21, 7, 28, 7, 21)
See A377109 for a guide to related sequences. (End)

Examples

			a(3) = 14 because (1+sqrt(2)+sqrt(3))^3 = 16 + 14*sqrt(2) + 12*sqrt(3) + 6*sqrt(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[2^(Floor[(n - 1)/2] - k - j) 3^j Multinomial[2 Floor[(n - 1)/2] + 1 - 2 j - 2 k, 2 j, 2 k + 1 - n + 2 Floor[n/2]], {j, 0, Floor[(n - 1)/2] - k + 1}], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
    a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[2]] /. Sqrt[3] -> 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)

Formula

Conjectures from Colin Barker, Jan 08 2013: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) + 8*a(n-4).
G.f.: -x*(2*x^2-2*x+1) / (8*x^4-16*x^3+4*x^2+4*x-1). (End)
The conjectures by Barker are true. See link. - Sela Fried, Jan 01 2025

Extensions

Edited by Clark Kimberling, Oct 20 2024

A377116 a(n) = coefficient of sqrt(6) in the expansion of (3 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 0, 2, 18, 128, 840, 5328, 33264, 206080, 1271808, 7833472, 48200064, 296423424, 1822459392, 11203152896, 68863546368, 423273267200, 2601614180352, 15990421856256, 98282063536128, 604069867552768, 3712780777586688, 22819757583302656, 140256346936639488
Offset: 0

Views

Author

Clark Kimberling, Oct 23 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 4 primes, with respective period lengths 4,5,9,10 and these periods:
p = 2: (2, 1, 1, 2)
p = 3: (1, 4, 3, 8, 8)
p = 5: (1, 6, 4, 1, 5, 7, 12, 12, 12)
p = 7: (1, 11, 5, 1, 18, 14, 4, 4, 2, 12)
See A377109 for a guide to related sequences.

Examples

			(3 + sqrt(2) + sqrt(3))^3 = 14 + 6*sqrt(2) + 6*sqrt(3) + 2*sqrt(6), so a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377113-A377116. *)
    tbl = Table[Expand[(3 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
    s4  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{12, -44, 48, 8}, {0, 0, 2, 18}, 25]

Formula

a(n) = 12*a(n-1) - 44*a(n-2) + 48*a(n-3) + 8*a(n-4), with a(0)=0, a(1)=0, a(3)=2, a(4)=18.
G.f.: 2*x^2*(-1 + 3*x)/(-1 + 12*x - 44*x^2 + 48*x^3 + 8*x^4).

A188572 a(n) = coefficient of sqrt(3) in the expansion of (1 + sqrt(2) + sqrt(3))^n sequence.

Original entry on oeis.org

0, 1, 2, 12, 40, 184, 720, 3072, 12544, 52416, 216448, 899328, 3724800, 15452672, 64052224, 265617408, 1101234176, 4566192128, 18932244480, 78498938880, 325475532800, 1349511512064, 5595423113216, 23200121487360, 96193798471680, 398845002121216
Offset: 0

Views

Author

Mateusz Szymański, Dec 28 2012

Keywords

Comments

From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 6,8,5,4,4,8 and these periods:
p = 2: (3, 3, 1, 2, 2, 1)
p = 3: (4, 2, 6, 6, 1, 1, 3, 1)
p = 5: (20, 20, 9, 10, 1)
p = 7: (18, 1, 16, 1)
p = 11: (32, 1, 30, 1)
p = 13: (28, 14, 1, 10, 3, 17, 10, 1)
See A377109 for a guide to related sequences. (End)
Cf. A377109.

Examples

			a(3) = 12 because (1+sqrt(2)+sqrt(3))^3 = 16 + 14*sqrt(2) + 12*sqrt(3) + 6*sqrt(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[3^(Floor[(n - 1)/2] - k - j) 2^j Multinomial[2 Floor[(n - 1)/2] + 1 - 2 j - 2 k, 2 j, 2 k + 1 - n + 2 Floor[n/2]], {j, 0, Floor[(n - 1)/2] - k + 1}], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
    a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[3]] /. Sqrt[2] -> 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)

Formula

Conjectures from R. J. Mathar, Jan 09 2013: (Start)
a(n) = +4*a(n-1) +4*a(n-2) -16*a(n-3) +8*a(n-4).
G.f.: x*(-1+2*x)/( -1+4*x+4*x^2-16*x^3+8*x^4 ). (End)
The conjectures by Mathar are true. See link. - Sela Fried, Jan 01 2025

Extensions

Edited by Clark Kimberling, Oct 20 2024

A188573 a(n) = coefficient of the sqrt(6) term in (1 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 0, 2, 6, 32, 120, 528, 2128, 8960, 36864, 153472, 635008, 2635776, 10922496, 45300736, 187800576, 778731520, 3228696576, 13387309056, 55506722816, 230146834432, 954246856704, 3956565671936, 16404954546176, 68019305840640, 282025965649920
Offset: 0

Views

Author

Mateusz Szymański, Dec 28 2012

Keywords

Comments

From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 6,5,14,4,4,8 and these periods:
p = 2: (1, 2, 2, 1, 3, 3)
p = 3: (1, 4, 3, 8, 8)
p = 5: (1, 5, 4, 1, 1, 6, 6, 6, 6, 6, 6, 2, 4, 6)
p = 7: (1, 16, 1, 18)
p = 11: (1, 30, 1, 32)
p = 13: (1, 10, 3, 17, 10, 1, 28, 14)
See A377109 for a guide to related sequences. (End)

Examples

			a(3) = 6, because (1+sqrt(2)+sqrt(3))^3 = 16 + 14 sqrt(2) + 12 sqrt(3) + 6 sqrt(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[2^(Floor[n/2] - j - 1 - k) 3^j Multinomial[2 k + n - 2 Floor[n/2], 2 j + 1, 2 Floor[n/2] - 2 k - 1 - 2 j], {j, 0, Floor[n/2] - k - 1}], {k, 0, Floor[n/2] - 1}]; Table[a[n], {n, 0, 25}]
    a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[6]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)

Formula

From G. C. Greubel, Apr 10 2018: (Start)
Empirical: a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) + 8*a(n-4).
Empirical: G.f.: 2*x^2*(1-x)/(1 - 4*x - 4*x^2 + 16*x^3 - 8*x^4). (End)
The conjectures by Greubel are true. See link. - Sela Fried, Jan 01 2025

Extensions

Keyword tabl removed by Michel Marcus, Apr 11 2018
Edited by Clark Kimberling, Oct 23 2024

A377112 a(n) = coefficient of sqrt(6) in the expansion of (2 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 0, 2, 12, 68, 360, 1878, 9716, 50120, 258192, 1329322, 6842396, 35215884, 181237368, 932711806, 4800019332, 24702255760, 127124540448, 654216959826, 3366774510892, 17326314208468, 89165799266952, 458870789205926, 2361470423992852, 12152751175719000
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 7 primes, with respective period lengths 6, 5, 18, 28, 16, 14, 35:
p = 2: (1, 2, 2, 1, 3, 3),
p = 3: (1, 4, 3, 8, 8).
See A377109 for a guide to related sequences.

Examples

			(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 2.
		

Crossrefs

Cf. A377109.

Programs

  • Mathematica
    (* Program 1 generates sequences A377109-A377112. *)
    tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
    s4  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{8, -14, -8, 23}, {0, 0, 2, 12}, 25]

Formula

a(n) = 8*a(n-1) - 14*a(n-2) - 8*a(n-3) + 23*a(n-4), with a(0)=0, a(1)=0, a(3)=2, a(4)=12.
G.f.: 2*x^2*(-1 + 2*x)/(-1 + 8*x - 14*x^2 - 8*x^3 + 23*x^4).

A377114 a(n) = coefficient of sqrt(2) in the expansion of (3 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 1, 6, 38, 240, 1504, 9360, 57968, 357888, 2205376, 13574784, 83503232, 513469440, 3156723712, 19404782592, 119276106752, 733133340672, 4506134745088, 27696241336320, 170229576458240, 1046279833190400, 6430725296226304, 39524980495024128
Offset: 0

Views

Author

Clark Kimberling, Oct 21 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 4 primes, with respective period lengths 1,8,10,7 and these periods:
p = 2: (2)
p = 3: (4, 2, 6, 6, 1, 1, 3, 1)
p = 5: (12, 3, 9, 6, 6, 2, 7, 3, 10, 2)
p = 7: (9, 15, 3, 18, 3, 15, 9)
See A377109 for a guide to related sequences.

Examples

			(3 + sqrt(2) + sqrt(3))^3 = 14 + 6*sqrt(2) + 6*sqrt(3) + 2*sqrt(6), so a(3) = 6.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377113-A377116. *)
    tbl = Table[Expand[(3 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
    s2  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{12, -44, 48, 8}, {0, 1, 6, 38}, 25]

Formula

a(n) = 12*a(n-1) - 44*a(n-2) + 48*a(n-3) + 8*a(n-4), with a(0)=0, a(1)=1, a(3)=6, a(4)=38.
G.f.: x*(-1 + 6*x - 10*x^2)/(-1 + 12*x - 44*x^2 + 48*x^3 + 8*x^4).

A377115 a(n) = coefficient of sqrt(3) in the expansion of (3 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 1, 6, 36, 216, 1304, 7920, 48320, 295680, 1812672, 11124864, 68320000, 419719680, 2579051008, 15849305088, 97406521344, 598661038080, 3679444570112, 22614556631040, 138994100486144, 854291341737984, 5250689954316288, 32272093691707392, 198352703517884416
Offset: 0

Views

Author

Clark Kimberling, Oct 21 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 4 primes, with respective period lengths 4,8,10,10 and these periods:
p = 2: (2, 1, 1, 2)
p = 3: (6, 1, 1, 3, 1, 4, 2, 6)
p = 5: (6, 2, 7, 3, 10, 2, 12, 3, 9, 6)
p = 7: (14, 4, 4, 2, 12, 1, 11, 5, 1, 18)
See A377109 for a guide to related sequences.

Examples

			(3 + sqrt(2) + sqrt(3))^3 = 14 + 6*sqrt(2) + 6*sqrt(3) + 2*sqrt(6), so a(3) = 6.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377113-A377116. *)
    tbl = Table[Expand[(3 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
    s3  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{12, -44, 48, 8}, {0, 1, 6, 36}, 25]

Formula

a(n) = 12*a(n-1) - 44*a(n-2) + 48*a(n-3) + 8*a(n-4), with a(0)=0, a(1)=1, a(3)=6, a(4)=36.
G.f.: x*(-1 + 6*x - 8*x^2)/(-1 + 12*x - 44*x^2 + 48*x^3 + 8*x^4).
Showing 1-10 of 16 results. Next