cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A378039 a(1)=3; a(n>1) = n-th first difference of A120327(k) = least nonsquarefree number greater than k.

Original entry on oeis.org

3, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 1, 2, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 1, 1, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Comments

The union is {0,1,2,3,4}.

Crossrefs

Positions of 0's are A005117.
Positions of 4's are A007675 - 1, except first term.
Positions of 1's are A068781.
Positions of 2's are A073247 - 1.
Positions of 3's are A073248 - 1, except first term.
First-differences of A120327.
For prime-powers we have A377780, first-differences of A000015.
Restriction is A377784 (first-differences of A377783, union A378040).
The opposite is A378036 (differences A378033), for prime-powers A377782.
The opposite for squarefree is A378085, differences of A070321
For squarefree we have A378087, restriction A378037, differences of A112926.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&SquareFreeQ[#]&],{n,100}]]

A378086 Number of nonsquarefree numbers < prime(n).

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 5, 6, 7, 11, 11, 13, 14, 14, 16, 20, 22, 23, 25, 26, 27, 29, 31, 33, 36, 39, 39, 40, 41, 42, 49, 50, 53, 53, 57, 58, 61, 63, 64, 68, 70, 71, 74, 75, 76, 77, 81, 84, 86, 87, 88, 90, 91, 97, 99, 101, 103, 104, 107, 109, 109, 113, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Examples

			The nonsquarefree numbers counted under each term begin:
  n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: n=10: n=11: n=12:
  --------------------------------------------------------------
   .    .    4    4    9    12   16   18   20   28    28    36
                       8    9    12   16   18   27    27    32
                       4    8    9    12   16   25    25    28
                            4    8    9    12   24    24    27
                                 4    8    9    20    20    25
                                      4    8    18    18    24
                                           4    16    16    20
                                                12    12    18
                                                9     9     16
                                                8     8     12
                                                4     4     9
                                                            8
                                                            4
		

Crossrefs

For nonprime numbers we have A014689.
Restriction of A057627 to the primes.
First-differences are A061399 (zeros A068361), squarefree A061398 (zeros A068360).
For composite instead of squarefree we have A065890.
For squarefree we have A071403, differences A373198.
Greatest is A378032 (differences A378034), restriction of A378033 (differences A378036).
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A070321 gives the greatest squarefree number up to n.
A112925 gives the greatest squarefree number between primes, differences A378038.
A112926 gives the least squarefree number between primes, differences A378037.
A120327 gives the least nonsquarefree number >= n, first-differences A378039.
A377783 gives the least nonsquarefree > prime(n), differences A377784.

Programs

  • Mathematica
    Table[Length[Select[Range[Prime[n]],!SquareFreeQ[#]&]],{n,100}]
  • Python
    from math import isqrt
    from sympy import prime, mobius
    def A378086(n): return (p:=prime(n))-sum(mobius(k)*(p//k**2) for k in range(1,isqrt(p)+1)) # Chai Wah Wu, Dec 05 2024

Formula

a(n) = A057627(prime(n)).

A378040 Union of A377783(n) = least nonsquarefree number > prime(n).

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 32, 40, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 108, 112, 116, 128, 132, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 284, 294, 308, 312
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Numbers k such that, if p is the greatest prime < k, all numbers from p to k (exclusive) are squarefree.

Crossrefs

For squarefree we have A112926 (diffs A378037), opposite A112925 (diffs A378038).
For prime-power instead of nonsquarefree we have A345531, differences A377703.
Union of A377783 (diffs A377784), restriction of A120327 (diffs A378039).
Nonsquarefree numbers not appearing are A378084, see also A378082, A378083.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.
A071403(n) = A013928(prime(n)) counts squarefree numbers up to prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers up to prime(n).
Cf. A378034 (differences of A378032), restriction of A378036 (differences A378033).

Programs

  • Mathematica
    Union[Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]]
    lns[p_]:=Module[{k=p+1},While[SquareFreeQ[k],k++];k]; Table[lns[p],{p,Prime[Range[70]]}]//Union (* Harvey P. Dale, Jun 12 2025 *)

A378082 Terms appearing only once in A377783 = least nonsquarefree number > prime(n).

Original entry on oeis.org

12, 16, 18, 20, 24, 40, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 108, 112, 116, 128, 132, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 294, 308, 312, 315, 320, 332, 338, 348
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Nonsquarefree numbers k such that if p < q are the two greatest primes < k, there is at least one nonsquarefree number between p and q but all numbers between q and k are squarefree. - Robert Israel, Nov 20 2024

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
   75: {2,3,3}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
   98: {1,4,4}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  116: {1,1,10}
  128: {1,1,1,1,1,1,1}
  132: {1,1,2,5}
		

Crossrefs

This is a transformation of A377783 (union A378040, differences A377784).
Note also A377783 restricts A120327 (differences A378039) to the primes.
Terms appearing twice are A378083.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Maple
    q:= 3: R:= NULL: flag:= false: count:= 0:
    while count < 100 do
      p:= q; q:= nextprime(q);
      for k from p+1 to q-1 do
        found:= false;
        if not numtheory:-issqrfree(k) then
          if flag then
              count:= count+1; R:= R,k
          fi;
          found:= true; break
        fi;
       od;
       flag:= found;
    od:
    R; # Robert Israel, Nov 20 2024
  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}];
    Select[Most[Union[y]],Count[y,#]==1&]

A378085 First differences of A070321 (greatest squarefree number <= n).

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 0, 0, 3, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 0, 3, 0, 0, 3, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 0, 3, 1, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 3, 1, 0, 2, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Examples

			The greatest squarefree number <= 50 is 47, and the greatest squarefree number <= 51 is 51, so a(51) = 4.
		

Crossrefs

Ones are A007674.
Zeros are A013929 - 1.
Twos are A280892.
Positions of first appearances are A020755 - 1 (except first term).
First-differences of A070321.
The nonsquarefree restriction is A378034, differences of A378032.
For nonsquarefree numbers we have A378036, differences of A378033.
The opposite restriction to primes is A378037, differences of A112926.
The restriction to primes is A378038, differences of A112925.
The nonsquarefree opposite is A378039, restriction A377784.
The opposite version is A378087.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&!SquareFreeQ[#]&],{n,100}]]

A377781 First differences of A065514(n) = greatest number < prime(n) that is 1 or a prime-power.

Original entry on oeis.org

1, 2, 1, 4, 2, 5, 1, 2, 8, 2, 3, 5, 4, 2, 6, 4, 6, 5, 3, 4, 2, 8, 2, 6, 8, 4, 2, 4, 2, 16, 3, 3, 6, 2, 10, 2, 6, 6, 6, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 4, 13, 1, 6, 6, 2, 6, 4, 8, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 8, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2024

Keywords

Comments

Note 1 is a power of a prime but not a prime-power.

Crossrefs

Differences of A065514, which is the restriction of A031218 (differences A377782).
The opposite is A377703 (restriction of A000015), differences of A345531.
The opposite for nonsquarefree is A377784, differences of A377783.
For nonsquarefree we have A378034, differences of A378032 (restriction of A378033).
The opposite for squarefree is A378037, differences of A112926 (restriction of A067535).
For squarefree we have A378038, differences of A112925 (restriction of A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
Prime-powers between primes:
- A053607 primes
- A080101 count (exclusive)
- A304521 by bits
- A366833 count
- A377057 positive
- A377286 zero
- A377287 one
- A377288 two

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,#>1&&!PrimePowerQ[#]&],{n,100}]]

A378083 Nonsquarefree numbers appearing exactly twice in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

4, 8, 32, 44, 104, 140, 284, 464, 572, 620, 644, 824, 860, 1232, 1292, 1304, 1484, 1700, 1724, 1880, 2084, 2132, 2240, 2312, 2384, 2660, 2732, 2804, 3392, 3464, 3560, 3920, 3932, 4004, 4220, 4244, 4424, 4640, 4724, 5012, 5444, 5480, 5504, 5660, 6092, 6200
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377783.

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    32: {1,1,1,1,1}
    44: {1,1,5}
   104: {1,1,1,6}
   140: {1,1,3,4}
   284: {1,1,20}
   464: {1,1,1,1,10}
   572: {1,1,5,6}
   620: {1,1,3,11}
   644: {1,1,4,9}
   824: {1,1,1,27}
   860: {1,1,3,14}
  1232: {1,1,1,1,4,5}
		

Crossrefs

Subset of A377783 (union A378040, diffs A377784), restriction of A120327 (diffs A378039).
Terms appearing once are A378082.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==2&]

A377782 First-differences of A031218(n) = greatest number <= n that is 1 or a prime-power.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 3, 1, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 0, 2, 1, 0, 0, 0, 0, 5, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

Note 1 is a power of a prime (A000961) but not a prime-power (A246655).

Crossrefs

Positions of 1 are A006549.
Positions of 0 are A080765 = A024619 - 1, complement A181062 = A000961 - 1.
Positions of 2 are A120432 (except initial terms).
Sorted positions of first appearances appear to include A167236 - 1.
Positions of terms > 1 are A373677.
The restriction to primes minus 1 is A377289.
Below, A (B) indicates that A is the first-differences of B:
- This sequence is A377782 (A031218), which has restriction to primes A065514 (A377781).
- The opposite is A377780 (A000015), restriction A377703 (A345531).
- For nonsquarefree we have A378036 (A378033), opposite A378039 (A120327).
- For squarefree we have A378085 (A112925), restriction A378038 (A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
A378034 gives differences of A378032 (restriction of A378033).
Prime-powers between primes: A053607, A080101, A366833, A377057, A377286, A377287.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&!PrimePowerQ[#]&],{n,100}]]

A378618 Sum of nonsquarefree numbers between prime(n) and prime(n+1).

Original entry on oeis.org

0, 4, 0, 17, 12, 16, 18, 20, 104, 0, 68, 40, 0, 89, 199, 110, 60, 127, 68, 72, 151, 161, 172, 278, 297, 0, 104, 108, 112, 849, 128, 403, 0, 579, 150, 461, 322, 164, 680, 351, 180, 561, 192, 196, 198, 819, 648, 449, 228, 232, 470, 240, 1472, 508, 521, 532, 270
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2024

Keywords

Examples

			The nonsquarefree numbers between prime(24) = 89 and prime(25) = 97 are {90, 92, 96}, so a(24) = 278.
		

Crossrefs

For prime instead of nonsquarefree we have A001043.
For composite instead of nonsquarefree we have A054265.
Zeros are A068361.
A000040 lists the primes, differences A001223, seconds A036263.
A070321 gives the greatest squarefree number up to n.
A071403 counts squarefree numbers up to prime(n), restriction of A013928.
A120327 gives the least nonsquarefree number >= n.
A378086 counts nonsquarefree numbers up to prime(n), restriction of A057627.
For squarefree numbers (A005117, differences A076259) between primes:
- length is A061398, zeros A068360
- min is A112926, differences A378037
- max is A112925, differences A378038
- sum is A373197
For nonsquarefree numbers (A013929, differences A078147) between primes:
- length is A061399
- min is A377783 (differences A377784), union A378040
- max is A378032 (differences A378034), restriction of A378033 (differences A378036)
- sum is A378618 (this)

Programs

  • Mathematica
    Table[Total[Select[Range[Prime[n],Prime[n+1]],!SquareFreeQ[#]&]],{n,100}]

A378616 Greatest non prime power <= prime(n).

Original entry on oeis.org

1, 1, 1, 6, 10, 12, 15, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 255, 262, 268, 270
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2024

Keywords

Comments

Conjecture: Equal to A006093(n) = prime(n) - 1 except at terms of A159611.

Examples

			The first number line below shows the non prime powers. The second shows the primes:
--1-------------6----------10----12----14-15-------18----20-21-22----24--
=====2==3====5=====7==========11====13==========17====19==========23=====
		

Crossrefs

For nonprime instead of non prime power we have A156037.
Restriction of A378367.
Lengths are A378615.
For nonsquarefree: A378032 (diffs A378034), restriction of A378033 (diffs A378036).
A000040 lists the primes, differences A001223
A000961 and A246655 list the prime powers, differences A057820.
A024619 lists the non prime powers, differences A375735, seconds A376599.
A080101 counts prime powers between primes (exclusive), inclusive A366833.
A361102 lists the non powers of primes, differences A375708.
Prime powers between primes:
- A377057 positive
- A377286 zero
- A377287 one
- A377288 two

Programs

  • Mathematica
    Table[Max[Select[Range[Prime[n]],Not@*PrimePowerQ]],{n,100}]
Previous Showing 11-20 of 21 results. Next