cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A380413 Terms appearing twice in A378086 (number of nonsquarefree numbers < prime(n)).

Original entry on oeis.org

0, 1, 11, 14, 39, 53, 109, 179, 222, 240, 251, 319, 337, 481, 505, 508, 578, 664, 674, 738, 818, 835, 877, 905, 933, 1041, 1069, 1098, 1325, 1352, 1392, 1535, 1539, 1567, 1652, 1663, 1732, 1817, 1849, 1960, 2134, 2148, 2158, 2220, 2387, 2428, 2457, 2622, 2625
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2025

Keywords

Crossrefs

A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061399 counts nonsquarefree integers between primes, see A068361, A061398, A068360, A377783, A378086.
A070321 gives the greatest squarefree number up to n.
A071403 counts squarefree numbers < prime(n), see A373198, A337030.
A112925 gives the greatest squarefree number between primes, least A112926.
Cf. A057627, A065890, A378032 (differences A378034), A378033 (differences A378036).

Programs

  • Mathematica
    y=Table[Length[Select[Range[Prime[n]],!SquareFreeQ[#]&]],{n,100}];
    Select[Most[Union[y]],Count[y,#]==2&]

Formula

a(n) = A378086(A068361(n)) = A378086(A068361(n)+1).

A061399 Number of nonsquarefree integers between primes prime(n) and prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 1, 1, 4, 0, 2, 1, 0, 2, 4, 2, 1, 2, 1, 1, 2, 2, 2, 3, 3, 0, 1, 1, 1, 7, 1, 3, 0, 4, 1, 3, 2, 1, 4, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 2, 1, 6, 2, 2, 2, 1, 3, 2, 0, 4, 6, 1, 1, 2, 4, 3, 5, 1, 3, 1, 4, 3, 3, 1, 3, 2, 1, 3, 3, 1, 4, 1, 1, 2, 2, 3, 2, 0, 1, 5, 3, 2, 3, 1, 3, 4, 1, 9, 1, 5, 2, 3, 0, 3
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 7 numbers which are not squarefree are {116,117,120,121,124,125,126}, so a(30)=7.
From _Gus Wiseman_, Dec 07 2024: (Start)
The a(n) nonsquarefree numbers for n = 1..15:
   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ----------------------------------------------------------
   .   4   .   8  12  16  18  20  24   .  32  40   .  44  48
               9                  25      36          45  49
                                  27                      50
                                  28                      52
(End)
		

Crossrefs

Zeros are A068361.
First differences of A378086, restriction of A057627 to the primes.
Other classes (instead of nonsquarefree):
- For composite we have A046933, first differences of A065890.
- For squarefree see A061398, A068360, A071403, A373197, A373198, A377431.
- For prime power we have A080101.
- For non prime power we have A368748, see A378616.
- For perfect power we have A377432, zeros A377436.
- For non perfect power we have A377433, A029707.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A120327 gives the least nonsquarefree number >= n.

Programs

A378033 Greatest nonsquarefree number <= n, or 1 if there is none (the case n <= 3).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 8, 9, 9, 9, 12, 12, 12, 12, 16, 16, 18, 18, 20, 20, 20, 20, 24, 25, 25, 27, 28, 28, 28, 28, 32, 32, 32, 32, 36, 36, 36, 36, 40, 40, 40, 40, 44, 45, 45, 45, 48, 49, 50, 50, 52, 52, 54, 54, 56, 56, 56, 56, 60, 60, 60, 63, 64, 64, 64, 64, 68
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Examples

			The nonsquarefree numbers <= 10 are {4, 8, 9}, so a(10) = 9.
		

Crossrefs

For prime-powers we have A031218, differences A377782.
Greatest of the nonsquarefree numbers counted by A057627.
The opposite for squarefree is A067535, differences A378087.
For squarefree we have A070321, differences A378085.
The opposite is A120327 (union A162966), differences A378039.
The restriction to the primes is A378032, opposite A377783 (union A378040).
First-differences are A378036, restriction A378034.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259, seconds A376590.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A112925 gives the greatest squarefree number < prime(n), differences A378038.
A112926 gives the least squarefree number > prime(n), differences A378037.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Table[NestWhile[#-1&,n,#>1&&SquareFreeQ[#]&],{n,100}]
  • PARI
    a(n) = my(k=n); while (issquarefree(k), k--); if(!k, 1, k); \\ Michel Marcus, Jul 26 2025

Formula

a(prime(n)) = A378032(n).
a(n) = A013929(A057627(n)), for n > 3. - Ridouane Oudra, Jul 26 2025

A378032 a(1) = a(2) = 1; a(n>2) is the greatest nonsquarefree number < prime(n).

Original entry on oeis.org

1, 1, 4, 4, 9, 12, 16, 18, 20, 28, 28, 36, 40, 40, 45, 52, 56, 60, 64, 68, 72, 76, 81, 88, 96, 100, 100, 104, 108, 112, 126, 128, 136, 136, 148, 150, 156, 162, 164, 172, 176, 180, 189, 192, 196, 198, 208, 220, 225, 228, 232, 236, 240, 250, 256, 261, 268, 270
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Examples

			The terms together with their prime indices begin:
    1: {}
    1: {}
    4: {1,1}
    4: {1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   28: {1,1,4}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   40: {1,1,1,3}
   45: {2,2,3}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

Terms appearing twice are A061351 + 1.
For prime-powers we have A065514 (diffs A377781), opposite A345531 (diffs A377703).
For squarefree we have A112925 (differences A378038).
The opposite for squarefree is A112926 (differences A378037).
The opposite is A377783 (union A378040), restriction of A120327 (differences A378039).
Restriction of A378033, which has differences A378036.
The first-differences are A378034, opposite A377784.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Table[NestWhile[#-1&,Prime[n],#>1&&SquareFreeQ[#]&],{n,100}]

Formula

a(n) = A378033(prime(n)).

A071403 Which squarefree number is prime? a(n)-th squarefree number equals n-th prime.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 20, 24, 27, 29, 31, 33, 37, 38, 42, 45, 46, 50, 52, 56, 61, 62, 64, 67, 68, 71, 78, 81, 84, 86, 92, 93, 96, 100, 103, 105, 109, 110, 117, 118, 121, 122, 130, 139, 141, 142, 145, 149, 150, 154, 158, 162, 166, 167, 170, 172, 174, 180
Offset: 1

Views

Author

Labos Elemer, May 24 2002

Keywords

Comments

Also the number of squarefree numbers <= prime(n). - Gus Wiseman, Dec 08 2024

Examples

			a(25)=61 because A005117(61) = prime(25) = 97.
From _Gus Wiseman_, Dec 08 2024: (Start)
The squarefree numbers up to prime(n) begin:
n = 1  2  3  4   5   6   7   8   9  10
    ----------------------------------
    2  3  5  7  11  13  17  19  23  29
    1  2  3  6  10  11  15  17  22  26
       1  2  5   7  10  14  15  21  23
          1  3   6   7  13  14  19  22
             2   5   6  11  13  17  21
             1   3   5  10  11  15  19
                 2   3   7  10  14  17
                 1   2   6   7  13  15
                     1   5   6  11  14
                         3   5  10  13
                         2   3   7  11
                         1   2   6  10
                             1   5   7
                                 3   6
                                 2   5
                                 1   3
                                     2
                                     1
The column-lengths are a(n).
(End)
		

Crossrefs

The strict version is A112929.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A070321 gives the greatest squarefree number up to n.
Other families: A014689, A027883, A378615, A065890.
Squarefree numbers between primes: A061398, A068360, A373197, A373198, A377430, A112925, A112926.
Nonsquarefree numbers: A057627, A378086, A061399, A068361, A120327, A377783, A378032, A378033.

Programs

  • Mathematica
    Position[Select[Range[300], SquareFreeQ], ?PrimeQ][[All, 1]] (* _Michael De Vlieger, Aug 17 2023 *)
  • PARI
    lista(nn)=sqfs = select(n->issquarefree(n), vector(nn, i, i)); for (i = 1, #sqfs, if (isprime(sqfs[i]), print1(i, ", "));); \\ Michel Marcus, Sep 11 2013
    
  • PARI
    a(n,p=prime(n))=sum(k=1, sqrtint(p), p\k^2*moebius(k)) \\ Charles R Greathouse IV, Sep 13 2013
    
  • PARI
    a(n,p=prime(n))=my(s); forfactored(k=1, sqrtint(p), s+=p\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Nov 27 2017
    
  • PARI
    first(n)=my(v=vector(n),pr,k); forsquarefree(m=1,n*logint(n,2)+3, k++; if(m[2][,2]==[1]~, v[pr++]=k; if(pr==n, return(v)))) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import prime, mobius
    def A071403(n): return (p:=prime(n))+sum(mobius(k)*(p//k**2) for k in range(2,isqrt(p)+1)) # Chai Wah Wu, Jul 20 2024

Formula

A005117(a(n)) = A000040(n) = prime(n).
a(n) ~ (6/Pi^2) * n log n. - Charles R Greathouse IV, Nov 27 2017
a(n) = A013928(A008864(n)). - Ridouane Oudra, Oct 15 2019
From Gus Wiseman, Dec 08 2024: (Start)
a(n) = A112929(n) + 1.
a(n+1) - a(n) = A373198(n) = A061398(n) - 1.
(End)

A378036 First differences of A378033 (greatest positive integer < n that is 1 or nonsquarefree).

Original entry on oeis.org

0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 1, 0, 0, 3, 1, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 1, 1, 0, 0, 0, 4, 0, 0, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Crossrefs

Positions of 0 are A005117 - 1, complement A013929 - 1.
Sums for squarefree numbers are A070321 (restriction A112925).
The restricted opposite is A377784, differences of A377783 (union A378040).
First-differences of A378033.
The restriction is A378034, differences of A378032.
The restricted opposite for squarefree is A378037, differences of A112926.
The opposite is A378039, differences of A120327 (union A162966).
For squarefree numbers we have A378085, restriction A378038.
The opposite for squarefree is A378087, differences of A067535.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259, seconds A376590.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&SquareFreeQ[#]&],{n,100}]]
  • PARI
    A378033(n) = if(n<=3, 1, forstep(k=n, 0, -1, if(!issquarefree(k), return(k))));
    A378036(n) = (A378033(1+n)-A378033(n)); \\ Antti Karttunen, Jan 28 2025

Formula

a(prime(n)) = A378034(n).

Extensions

Data section extended to a(107) by Antti Karttunen, Jan 28 2025

A377784 First-differences of A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

0, 4, 0, 4, 4, 2, 2, 4, 8, 0, 8, 4, 0, 4, 6, 6, 3, 5, 4, 3, 5, 4, 6, 8, 6, 0, 4, 4, 4, 12, 4, 8, 0, 10, 2, 8, 4, 4, 7, 5, 4, 8, 4, 2, 2, 12, 12, 4, 4, 2, 6, 2, 10, 8, 4, 6, 2, 7, 5, 0, 10, 14, 4, 3, 5, 12, 6, 10, 2, 6, 4, 8, 7, 5, 4, 8, 8, 4, 8, 8, 3, 9, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Comments

There are no consecutive 0's.
Does this sequence contain every positive integer > 1?

Crossrefs

Positions of 0's are A068361.
The opposite for squarefree is A378038, differences of A112925.
For prime-power instead of nonsquarefree and primes + 1 we have A377703, first-differences of A345531.
First-differences of A377783, union A378040.
The opposite is A378034 (differences of A378032), restriction of A378036 (differences A378033).
For squarefree instead of nonsquarefree we have A378037, first-differences of A112926.
Restriction of A378039 (first-differences of A120327) to the primes.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398, A068360, A337030, A377430, A377431 count squarefree numbers between primes.
A061399, A068361, A378086 count nonsquarefree numbers between primes.
A070321 gives the greatest squarefree number up to n.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,100}]]

A378034 First-differences of A378032 (greatest number < prime(n) that is 1 or nonsquarefree).

Original entry on oeis.org

0, 3, 0, 5, 3, 4, 2, 2, 8, 0, 8, 4, 0, 5, 7, 4, 4, 4, 4, 4, 4, 5, 7, 8, 4, 0, 4, 4, 4, 14, 2, 8, 0, 12, 2, 6, 6, 2, 8, 4, 4, 9, 3, 4, 2, 10, 12, 5, 3, 4, 4, 4, 10, 6, 5, 7, 2, 6, 4, 0, 12, 14, 2, 4, 4, 12, 8, 8, 4, 4, 4, 8, 8, 6, 2, 8, 8, 4, 8, 8, 4, 8, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Crossrefs

Positions of 0 are A068361.
The opposite for prime-powers is A377703, differences of A345531.
For prime-powers we have A377781, differences of A065514.
The opposite is A377784, differences of A377783 (union A378040).
First-differences of A378032.
Restriction of A378036, differences of A378033.
The opposite for squarefree numbers is A378037, differences of A112926.
For squarefree numbers we have A378038, differences of A112925.
The unrestricted opposite is A378039, differences of A120327 (union A162966).
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n],#>1&&SquareFreeQ[#]&],{n,100}]]

Formula

a(n) = A378036(prime(n)).

A378040 Union of A377783(n) = least nonsquarefree number > prime(n).

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 32, 40, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 108, 112, 116, 128, 132, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 284, 294, 308, 312
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Numbers k such that, if p is the greatest prime < k, all numbers from p to k (exclusive) are squarefree.

Crossrefs

For squarefree we have A112926 (diffs A378037), opposite A112925 (diffs A378038).
For prime-power instead of nonsquarefree we have A345531, differences A377703.
Union of A377783 (diffs A377784), restriction of A120327 (diffs A378039).
Nonsquarefree numbers not appearing are A378084, see also A378082, A378083.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.
A071403(n) = A013928(prime(n)) counts squarefree numbers up to prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers up to prime(n).
Cf. A378034 (differences of A378032), restriction of A378036 (differences A378033).

Programs

  • Mathematica
    Union[Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]]
    lns[p_]:=Module[{k=p+1},While[SquareFreeQ[k],k++];k]; Table[lns[p],{p,Prime[Range[70]]}]//Union (* Harvey P. Dale, Jun 12 2025 *)

A378084 Nonsquarefree numbers not appearing in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

9, 25, 27, 28, 36, 45, 49, 50, 52, 56, 64, 76, 81, 88, 92, 96, 99, 100, 117, 120, 121, 124, 125, 126, 135, 136, 144, 147, 148, 153, 156, 162, 169, 171, 172, 176, 188, 189, 204, 207, 208, 216, 220, 225, 236, 243, 244, 245, 248, 250, 256, 261, 268, 275, 276, 280
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377784.

Examples

			The terms together with their prime indices begin:
    9: {2,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   36: {1,1,2,2}
   45: {2,2,3}
   49: {4,4}
   50: {1,3,3}
   52: {1,1,6}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   76: {1,1,8}
   81: {2,2,2,2}
   88: {1,1,1,5}
   92: {1,1,9}
   96: {1,1,1,1,1,2}
		

Crossrefs

Disjoint from A377783 (union A378040), first-differences A377784.
Appearing once: A378082.
Appearing twice: A378083.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A112925 gives least squarefree number > prime(n), differences A378038.
A112926 gives greatest squarefree number < prime(n), differences A378037.
A120327 (union A162966) gives least nonsquarefree number >= n, differences A378039.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    nn=100;
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,nn}];
    Complement[Select[Range[Prime[nn]],!SquareFreeQ[#]&],y]

Formula

Complement of A378040 in A013929.
Showing 1-10 of 20 results. Next