A384321 Numbers whose distinct prime indices are not maximally refined.
5, 7, 11, 13, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119
Offset: 1
Keywords
Examples
The prime indices of 25 are {3,3}, which has refinements: ((3),(1,2)) and ((1,2),(3)), so 25 is in the sequence. The prime indices of 102 are {1,2,7}, which has refinement ((1),(2),(3,4)), so 102 is in the sequence. The terms together with their prime indices begin: 5: {3} 39: {2,6} 73: {21} 7: {4} 41: {13} 74: {1,12} 11: {5} 43: {14} 77: {4,5} 13: {6} 46: {1,9} 79: {22} 17: {7} 47: {15} 82: {1,13} 19: {8} 49: {4,4} 83: {23} 21: {2,4} 51: {2,7} 85: {3,7} 22: {1,5} 53: {16} 86: {1,14} 23: {9} 55: {3,5} 87: {2,10} 25: {3,3} 57: {2,8} 89: {24} 26: {1,6} 58: {1,10} 91: {4,6} 29: {10} 59: {17} 93: {2,11} 31: {11} 61: {18} 94: {1,15} 33: {2,5} 62: {1,11} 95: {3,8} 34: {1,7} 65: {3,6} 97: {25} 35: {3,4} 67: {19} 101: {26} 37: {12} 69: {2,9} 102: {1,2,7} 38: {1,8} 71: {20} 103: {27}
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; Select[Range[30],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]!={}]&]
Comments