cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A384390 Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

5, 7, 21, 22, 26, 33, 35, 39, 102, 114, 130, 154, 165, 170, 190, 195, 231, 238, 255, 285
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint in the strict case.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The strict partition (7,2,1) with Heinz number 102 can only be properly refined as ((4,3),(2),(1)), so 102 is in the sequence. The other refinement ((7),(2),(1)) is not proper.
The terms together with their prime indices begin:
    5: {3}
    7: {4}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   33: {2,5}
   35: {3,4}
   39: {2,6}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  154: {1,4,5}
  165: {2,3,5}
  170: {1,3,7}
  190: {1,3,8}
  195: {2,3,6}
  231: {2,4,5}
  238: {1,4,7}
  255: {2,3,7}
  285: {2,3,8}
		

Crossrefs

The non-proper version is A383707, counted by A179009.
Partitions of this type are counted by A384319, non-strict A384323 (ranks A384347).
This is the unique case of A384321, counted by A384317.
This is the case of a unique proper choice in A384322.
The complement is A384349 \/ A384393.
These are positions of 1 in A384389.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts strict partitions of each prime index, non-strict A299200.
Cf. A382912, counted by A383710, odd case A383711.
Cf. A382913, counted by A383708, odd case A383533.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]==1&]

A383506 Number of non Wilf section-sum partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 4, 4, 7, 9, 12, 18, 25, 32, 42, 55, 64, 87, 101, 128, 147, 192, 218, 273, 314, 394, 450, 552, 631, 772, 886, 1066, 1221, 1458, 1677, 1980, 2269, 2672, 3029
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different, ranked by A130091.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(4) = 1 through a(12) = 12 partitions (A=10, B=11):
  (31)  (32)  (51)  (43)  (53)    (54)  (64)    (65)    (75)
        (41)        (52)  (62)    (63)  (73)    (74)    (84)
                    (61)  (71)    (72)  (82)    (83)    (93)
                          (3311)  (81)  (91)    (92)    (A2)
                                        (631)   (A1)    (B1)
                                        (3322)  (632)   (732)
                                        (4411)  (641)   (831)
                                                (731)   (5511)
                                                (6311)  (6411)
                                                        (7311)
                                                        (63111)
                                                        (333111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A351592 (A384006).
The Look-and-Say case is A383511 (A383518).
These partitions are ranked by (A383514).
For Wilf instead of non Wilf we have A383519 (A383520).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).

Programs

  • Mathematica
    disjointDiffs[y_]:=Select[Tuples[IntegerPartitions /@ Differences[Prepend[Sort[y],0]]], UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n], disjointDiffs[#]!={} && !UnsameQ@@Length/@Split[#]&]],{n,0,15}]

A384005 Number of ways to choose disjoint strict integer partitions, one of each conjugate prime index of n.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 22 2025

Keywords

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), and we have choices (6,1) and (4,2,1), so a(96) = 2.
The prime indices of 108 are {1,1,2,2,2}, conjugate (5,3), and we have choices (5,3), (5,2,1), (4,3,1), so a(108) = 3.
		

Crossrefs

Adding up over all integer partitions gives A279790, strict A279375.
For multiplicities instead of indices we have conjugate of A382525.
The conjugate version is A383706.
Positive positions are A384010, conjugate A382913, counted by A383708, odd case A383533.
Positions of 0 are A384011.
Without disjointness we have A384179, conjugate A357982, non-strict version A299200.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[pof[conj[prix[n]]]],{n,100}]

Formula

a(n) = A383706(A122111(n)).

A384319 Number of strict integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 2, 3, 1, 0, 4, 4, 4, 2, 0, 6, 7, 8, 8, 3, 2, 9, 9, 14, 13, 6, 7, 3, 15, 13, 20
Offset: 0

Views

Author

Gus Wiseman, May 28 2025

Keywords

Examples

			For y = (5,4,2) we have choices ((5),(4),(2)) and ((5),(3,1),(2)), so y is counted under a(11).
The a(3) = 1 through a(11) = 4 partitions:
  (3)  (4)  .  (4,2)  (4,3)  (6,2)  .  (5,3,2)  (5,4,2)
               (5,1)  (5,2)            (5,4,1)  (6,3,2)
                      (6,1)            (6,3,1)  (7,3,1)
                                       (7,2,1)  (8,2,1)
		

Crossrefs

The case of a unique choice is A179009, ranks A383707.
Choices of this type for each prime index are counted by A383706.
The non-strict version for at least one choice is A383708, ranks A382913.
The non-strict version for no choices is A383710, ranks A382912.
The non-strict version for more than one choice is A384317, ranks A384321.
The version for at least one choice is A384322, counted by A384318.
The non-strict version is A384323, ranks A384347.
These partitions are ranked by A384390.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[pof[#]]==2&]],{n,0,30}]

A383530 Number of non Wilf and non conjugate Wilf integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 2, 5, 12, 14, 19, 35, 38, 55, 83, 107, 137, 209, 252, 359, 462, 612, 757, 1032, 1266, 1649, 2050, 2617, 3210, 4111, 4980, 6262, 7659, 9479, 11484, 14224, 17132, 20962, 25259, 30693, 36744, 44517, 53043, 63850, 75955, 90943, 107721, 128485
Offset: 0

Views

Author

Gus Wiseman, May 14 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The a(0) = 0 through a(9) = 12 partitions:
  .  .  .  (21)  .  .  (42)    (421)   (431)    (63)
                       (321)   (3211)  (521)    (432)
                       (2211)          (3221)   (531)
                                       (4211)   (621)
                                       (32111)  (3321)
                                                (4221)
                                                (4311)
                                                (5211)
                                                (32211)
                                                (42111)
                                                (222111)
                                                (321111)
		

Crossrefs

Negating both sides gives A383507, ranks A383532.
These partitions are ranked by A383531.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A239455 counts Look-and-Say partitions, complement A351293.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A381431 is the section-sum transform, union A381432, complement A381433.
A383534 gives 0-prepended differences by rank, see A325351.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&!UnsameQ@@Length/@Split[conj[#]]&]], {n,0,30}]

Formula

These partitions have Heinz numbers A130092 /\ A383513.

A384006 Heinz numbers of Look-and-Say partitions without distinct multiplicities (non Wilf).

Original entry on oeis.org

216, 1000, 1296, 2744, 3375, 7776, 9261, 10000, 10648, 17576, 32400, 35937, 38416, 38880, 39304, 42875, 46656, 50625, 54000, 54432, 54872, 59319, 63504, 81000, 85536, 90000, 97336, 100000
Offset: 1

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different, ranked by A130091, complement A130092.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.

Examples

			The terms together with their prime indices begin:
     216: {1,1,1,2,2,2}
    1000: {1,1,1,3,3,3}
    1296: {1,1,1,1,2,2,2,2}
    2744: {1,1,1,4,4,4}
    3375: {2,2,2,3,3,3}
    7776: {1,1,1,1,1,2,2,2,2,2}
    9261: {2,2,2,4,4,4}
   10000: {1,1,1,1,3,3,3,3}
   10648: {1,1,1,5,5,5}
   17576: {1,1,1,6,6,6}
   32400: {1,1,1,1,2,2,2,2,3,3}
   35937: {2,2,2,5,5,5}
   38416: {1,1,1,1,4,4,4,4}
   38880: {1,1,1,1,1,2,2,2,2,2,3}
   39304: {1,1,1,7,7,7}
   42875: {3,3,3,4,4,4}
   46656: {1,1,1,1,1,1,2,2,2,2,2,2}
   50625: {2,2,2,2,3,3,3,3}
   54000: {1,1,1,1,2,2,2,3,3,3}
   54432: {1,1,1,1,1,2,2,2,2,2,4}
   54872: {1,1,1,8,8,8}
   59319: {2,2,2,6,6,6}
   63504: {1,1,1,1,2,2,2,2,4,4}
   81000: {1,1,1,2,2,2,2,3,3,3}
   85536: {1,1,1,1,1,2,2,2,2,2,5}
   90000: {1,1,1,1,2,2,3,3,3,3}
   97336: {1,1,1,9,9,9}
  100000: {1,1,1,1,1,3,3,3,3,3}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A351592.
For section-sum instead of Look-and-Say we have (A383514), counted by A383506.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],disjointFamilies[prix[#]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]

A386635 Triangle read by rows where T(n,k) is the number of separable type set partitions of {1..n} into k blocks.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 126, 2737, 7686, 6951, 2646, 462, 36, 1, 0, 0, 126, 7455, 32725, 42315, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2025

Keywords

Comments

A set partition is of separable type iff the underlying set has a permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of separable type iff its greatest block size is at most one more than the sum of all its other blocks sizes.
This is different from separable partitions (A325534) and partitions of separable type (A336106).

Examples

			Row n = 4 counts the following set partitions:
  .  .  {{1,2},{3,4}}  {{1},{2},{3,4}}  {{1},{2},{3},{4}}
        {{1,3},{2,4}}  {{1},{2,3},{4}}
        {{1,4},{2,3}}  {{1},{2,4},{3}}
                       {{1,2},{3},{4}}
                       {{1,3},{2},{4}}
                       {{1,4},{2},{3}}
Triangle begins:
    1
    0    1
    0    0    1
    0    0    3    1
    0    0    3    6    1
    0    0   10   25   10    1
    0    0   10   75   65   15    1
    0    0   35  280  350  140   21    1
		

Crossrefs

Column k = 2 appears to be A128015.
For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
Row sums are A386633.
The complement is counted by A386636, row sums A386634.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&];
    Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]!={}&]],{n,0,5},{k,0,n}]

A381435 Numbers appearing more than once in A381431 (section-sum partition of prime indices).

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 49, 51, 52, 53, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101, 103, 104, 106, 107, 109, 111, 113, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
   5: {3}
   7: {4}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  26: {1,6}
  29: {10}
  31: {11}
  34: {1,7}
  37: {12}
  38: {1,8}
  39: {2,6}
  41: {13}
  43: {14}
  46: {1,9}
  47: {15}
  49: {4,4}
  51: {2,7}
  52: {1,1,6}
		

Crossrefs

- fixed points are A000961, A000005
- conjugate is A048767, fixed points A048768, A217605
- all numbers present are A381432, conjugate A351294
- numbers missing are A381433, conjugate A351295
- numbers appearing only once are A381434, conjugate A381540
- numbers appearing more than once are A381435 (this), conjugate A381541
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
A381436 lists section-sum partition of prime indices, conjugate A381440.
Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]>1&]

Formula

The complement is A381434 U A381433.

A382773 Number of ways to permute a multiset whose multiplicities are the prime indices of n so that the run-lengths are all different.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 4, 4, 1, 0, 4, 4, 0, 0, 1, 6, 1, 0, 4, 6, 4, 0, 1, 6, 4, 0, 1, 6, 1, 0, 0, 8, 1, 0, 4, 0, 6, 0, 1, 0, 6, 0, 6, 8, 1, 0, 1, 10, 0, 0, 8, 6, 1, 0, 8, 6, 1, 0, 1, 10, 0, 0, 6, 6, 1, 0, 0, 12, 1, 0, 16
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(n) partitions for n = 6, 21, 30, 46:
  (1,1,2)  (1,1,1,1,2,2)  (1,1,1,2,2,3)  (1,1,1,1,1,1,1,1,1,2)
  (2,1,1)  (1,1,1,2,2,1)  (1,1,1,3,2,2)  (1,1,1,1,1,1,1,2,1,1)
           (1,2,2,1,1,1)  (2,2,1,1,1,3)  (1,1,1,1,1,1,2,1,1,1)
           (2,2,1,1,1,1)  (2,2,3,1,1,1)  (1,1,1,1,1,2,1,1,1,1)
                          (3,1,1,1,2,2)  (1,1,1,1,2,1,1,1,1,1)
                          (3,2,2,1,1,1)  (1,1,1,2,1,1,1,1,1,1)
                                         (1,1,2,1,1,1,1,1,1,1)
                                         (2,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Positions of 1 are A008578.
For anti-run permutations we have A335125.
For just prime indices we have A382771, firsts A382772, equal A382857.
These permutations for factorials are counted by A382774, equal A335407.
For equal instead of distinct run-lengths we have A382858.
Positions of 0 are A382912, complement A382913.
A044813 lists numbers whose binary expansion has distinct run-lengths, equal A140690.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],UnsameQ@@Length/@Split[#]&]],{n,100}]

Formula

a(n) = A382771(A181821(n)) = A382771(A304660(n)).

A383089 Numbers whose prime indices have more than one permutation with all equal run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2025

Keywords

Comments

First differs from A362606 (complement A359178 with 1) in having 180 and lacking 240.
First differs from A130092 (complement A130091) in having 360 and lacking 240.
First differs from A351295 (complement A351294) in having 216 and lacking 240.
Includes all squarefree numbers A005117 except the primes A000040.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 36 are {1,1,2,2}, and we have 4 permutations each having all equal run-lengths: (1,1,2,2), (1,2,1,2), (2,2,1,1), (2,1,2,1), so 36 is in the sequence.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   46: {1,9}
   51: {2,7}
   55: {3,5}
   57: {2,8}
   58: {1,10}
   60: {1,1,2,3}
		

Crossrefs

Positions of terms > 1 in A382857 (distinct A382771), zeros A382879, ones A383112.
For run-sums instead of lengths we have A383015, counted by A383097.
Partitions of this type are counted by A383090.
The complement is A383091, counted by A383092, just zero A382915, just one A383094.
For distinct instead of equal run-sums we have A383113.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A047966 counts partitions with equal run-lengths, compositions A329738.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct run-lengths, ranks A130091.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Select[Range[100],Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]>1&]

Formula

The complement is A383091 = A382879 \/ A383112, counted by A382915 + A383094.
Previous Showing 21-30 of 72 results. Next