cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 409 results. Next

A387237 Expansion of 1/((1-x) * (1-5*x))^(5/2).

Original entry on oeis.org

1, 15, 145, 1155, 8260, 55188, 351960, 2170080, 13042095, 76827465, 445335891, 2547479025, 14412134100, 80773641900, 449065521300, 2479190589180, 13603361708775, 74238475926825, 403197150223175, 2180369322394725, 11744998515662720, 63044308615576200, 337323759106291100
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-5*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-5*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(5/2))
    

Formula

n*a(n) = (6*n+9)*a(n-1) - 5*(n+3)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 5^k * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = Sum_{k=0..n} (-4)^k * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 4^k * 5^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k) = (binomial(n+4,2)/6) * A026377(n+2).
a(n) = (-1)^n * Sum_{k=0..n} 6^k * (5/6)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).

A387239 a(n) = Sum_{k=0..n} binomial(n+3,k+3) * binomial(2*k+6,k+6).

Original entry on oeis.org

1, 12, 95, 630, 3801, 21672, 119154, 639180, 3369795, 17543196, 90476100, 463291920, 2359240975, 11961944400, 60440659640, 304543085040, 1531044995355, 7682898791700, 38494752520175, 192632866196694, 962948703201331, 4809438625979592, 24002988378037350, 119719958370912900
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    Table[Sum[Binomial[n+3,k+3]* Binomial[2*k+6, k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+3, k+3)*binomial(2*k+6, k+6));
    

Formula

n*(n+6)*a(n) = (n+3) * (3*(2*n+5)*a(n-1) - 5*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+3*x+x^2)^(n+3).
E.g.f.: exp(3*x) * BesselI(3, 2*x), with offset 3.

A387272 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n+2,k+2) * binomial(2*k+4,k+4).

Original entry on oeis.org

1, 12, 100, 720, 4815, 30884, 193144, 1188576, 7236690, 43741720, 263056728, 1576298464, 9421080123, 56200937940, 334801389360, 1992471776448, 11848869296622, 70425535830696, 418426332826200, 2485390365370080, 14760336569524854, 87650482093915752
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+2,k+2) * Binomial(2*k+4,k+4): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+2,k+2]*Binomial[2*k+4,k+4],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n+2, k+2)*binomial(2*k+4, k+4));
    

Formula

n*(n+4)*a(n) = (n+2) * (4*(2*n+3)*a(n-1) - 12*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+4*x+x^2)^(n+2).
E.g.f.: exp(4*x) * BesselI(2, 2*x), with offset 2.

A387278 a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n+1,k+1) * binomial(2*k+2,k+2).

Original entry on oeis.org

1, 10, 78, 560, 3885, 26550, 180285, 1221400, 8272251, 56062550, 380361212, 2583867720, 17575724491, 119705522370, 816297170310, 5572945684800, 38088275031435, 260576833989150, 1784382167211378, 12229792774162800, 83888652677196591, 575858959975595010
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^(n-k) * Binomial(n+1,k+1) * Binomial(2*k+2,k+2): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 30 2025
  • Mathematica
    Table[Sum[3^(n-k)*Binomial[n+1,k+1]*Binomial[2*k+2,k+2],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*binomial(n+1, k+1)*binomial(2*k+2, k+2));
    

Formula

n*(n+2)*a(n) = (n+1) * (5*(2*n+1)*a(n-1) - 21*n*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = [x^n] (1+5*x+x^2)^(n+1).
E.g.f.: exp(5*x) * BesselI(1, 2*x), with offset 1.

A387294 Decimal expansion of the largest dihedral angle, in radians, in a gyroelongated triangular cupola (Johnson solid J_22).

Original entry on oeis.org

2, 9, 5, 7, 0, 8, 0, 0, 7, 9, 6, 3, 5, 4, 4, 8, 1, 5, 1, 5, 6, 1, 8, 7, 2, 5, 8, 1, 3, 4, 5, 0, 3, 7, 6, 5, 3, 0, 5, 1, 8, 0, 8, 7, 0, 0, 4, 0, 8, 9, 9, 7, 9, 2, 3, 0, 0, 0, 5, 1, 8, 7, 0, 3, 7, 2, 7, 8, 5, 7, 5, 7, 7, 5, 3, 2, 0, 1, 3, 8, 4, 9, 7, 2, 2, 0, 0, 6, 3, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 25 2025

Keywords

Comments

This is the dihedral angle between a triangular face in the antiprism part of the solid and a triangular face in the cupola part of the solid.
Also the analogous dihedral angle in a gyroelongated triangular bicupola (Johnson solid J_44).

Examples

			2.9570800796354481515618725813450376530518087004...
		

Crossrefs

Cf. other J_22 dihedral angles: A195698, A387295, A387296, A387297.
Cf. A344076 (J_22 volume), A344077 (J_22 surface area).
Cf. A385256 (J_44 volume), A385257 (J_44 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcSec[3] + ArcCos[1 - Sqrt[12]/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J22", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(1/3) + arccos(1 - 2*sqrt(3)/3) = A137914 + arccos(-A246724).

A387295 Decimal expansion of the second largest dihedral angle, in radians, in a gyroelongated triangular cupola (Johnson solid J_22).

Original entry on oeis.org

2, 6, 8, 1, 4, 3, 7, 2, 8, 0, 4, 1, 9, 1, 8, 2, 7, 4, 7, 5, 9, 0, 8, 0, 0, 5, 0, 5, 6, 1, 2, 8, 0, 8, 0, 3, 1, 5, 8, 4, 8, 8, 3, 3, 8, 6, 0, 6, 3, 9, 0, 8, 5, 7, 4, 9, 0, 4, 6, 6, 8, 4, 9, 9, 3, 8, 5, 7, 7, 7, 3, 0, 8, 9, 5, 7, 7, 3, 4, 2, 1, 7, 2, 5, 6, 1, 4, 6, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 25 2025

Keywords

Comments

This is the dihedral angle between a triangular face in the antiprism part of the solid and a square face in the cupola part of the solid.
Also the analogous dihedral angle in a gyroelongated triangular bicupola (Johnson solid J_44).

Examples

			2.6814372804191827475908005056128080315848833860639...
		

Crossrefs

Cf. other J_22 dihedral angles: A195698, A387294, A387296, A387297.
Cf. A344076 (J_22 volume), A344077 (J_22 surface area).
Cf. A385256 (J_44 volume), A385257 (J_44 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcTan[Sqrt[2]] + ArcCos[1 - Sqrt[12]/3], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J22", "DihedralAngles"]], 2], 10, 100]]

Formula

Equals arccos(sqrt(3)/3) + arccos(1 - 2*sqrt(3)/3) = A195696 + arccos(-A246724).

A387296 Decimal expansion of the third largest dihedral angle, in radians, in a gyroelongated triangular cupola (Johnson solid J_22).

Original entry on oeis.org

2, 5, 3, 4, 6, 0, 0, 1, 4, 9, 7, 1, 5, 1, 2, 6, 1, 9, 3, 0, 9, 1, 5, 0, 2, 8, 1, 0, 2, 1, 0, 2, 1, 0, 7, 0, 2, 1, 4, 9, 8, 3, 0, 3, 2, 9, 1, 9, 3, 5, 1, 5, 3, 6, 3, 6, 8, 8, 4, 3, 4, 6, 4, 6, 4, 1, 3, 6, 2, 5, 9, 5, 0, 3, 8, 5, 3, 4, 7, 9, 8, 9, 3, 8, 8, 4, 6, 2, 6, 1
Offset: 1

Views

Author

Paolo Xausa, Aug 26 2025

Keywords

Comments

This is the dihedral angle between triangular faces in the antiprism part of the solid.
Also the analogous dihedral angle in a gyroelongated triangular bicupola (Johnson solid J_44).

Examples

			2.5346001497151261930915028102102107021498303291935...
		

Crossrefs

Cf. other J_22 dihedral angles: A195698, A387294, A387295, A387297.
Cf. A344076 (J_22 volume), A344077 (J_22 surface area).
Cf. A385256 (J_44 volume), A385257 (J_44 surface area).
Cf. A010469.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(1 - Sqrt[12])/3], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J22", "DihedralAngles"]], 3], 10, 100]]

Formula

Equals arccos((1 - 2*sqrt(3))/3) = arccos((1 - A010469)/3).

A387297 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated triangular cupola (Johnson solid J_22).

Original entry on oeis.org

1, 7, 2, 6, 1, 2, 0, 6, 6, 2, 2, 9, 4, 6, 7, 3, 4, 6, 9, 4, 2, 6, 9, 4, 3, 4, 0, 3, 0, 9, 7, 0, 5, 0, 2, 7, 7, 3, 4, 1, 4, 6, 8, 6, 9, 1, 0, 5, 3, 9, 0, 3, 0, 8, 3, 9, 4, 4, 9, 7, 0, 3, 7, 0, 0, 6, 3, 8, 6, 5, 2, 6, 3, 0, 5, 3, 7, 5, 7, 7, 6, 1, 8, 6, 8, 7, 5, 4, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Aug 26 2025

Keywords

Comments

This is the dihedral angle between a triangular face and the hexagonal face.

Examples

			1.7261206622946734694269434030970502773414686910539...
		

Crossrefs

Cf. other J_22 dihedral angles: A195698, A387294, A387295, A387296.
Cf. A344076 (J_22 volume), A344077 (J_22 surface area).
Cf. A010469.

Programs

  • Mathematica
    First[RealDigits[ArcCos[1 - 2/Sqrt[3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J22", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(1 - 2*sqrt(3)/3) = arccos(1 - A010469/3).

A387311 a(n) = Sum_{k=0..n} 3^k * binomial(n+3,k+3) * binomial(2*k+6,k+6).

Original entry on oeis.org

1, 28, 535, 8750, 132041, 1900808, 26557986, 363716220, 4912064355, 65673861484, 871539802276, 11501122783696, 151118588963615, 1978948331160080, 25846338449608184, 336857447941007280, 4382848524348689883, 56947000383926523780, 739095412895790074215, 9583718189242229830798
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[3^k * Binomial[n+3,k+3]*Binomial[2*k+6, k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(n+3, k+3)*binomial(2*k+6, k+6));
    

Formula

n*(n+6)*a(n) = (n+3) * (7*(2*n+5)*a(n-1) - 13*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+7*x+9*x^2)^(n+3).
E.g.f.: exp(7*x) * BesselI(3, 6*x) / 27, with offset 3.

A387320 Decimal expansion of the largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 6, 8, 7, 1, 5, 0, 5, 0, 5, 6, 3, 7, 0, 7, 0, 6, 2, 2, 0, 5, 8, 2, 3, 7, 6, 7, 1, 0, 3, 4, 2, 1, 7, 8, 7, 2, 4, 0, 8, 0, 9, 4, 2, 4, 3, 7, 8, 8, 1, 6, 0, 5, 3, 3, 1, 8, 5, 9, 1, 6, 8, 3, 2, 2, 7, 7, 2, 3, 2, 9, 7, 1, 2, 7, 7, 5, 0, 1, 0, 3, 2, 5, 2, 6, 9, 7, 3, 5, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 27 2025

Keywords

Comments

This is the dihedral angle between triangular faces in the antiprism part of the solid.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.687150505637070622058237671034217872408094243788...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387321, A387322, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(1 - Sqrt[8 + Sqrt[32]])/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J23", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((1 - 2*sqrt(2 + sqrt(2)))/3) = arccos((1 - 2*sqrt(2 + A002193))/3).
Previous Showing 31-40 of 409 results. Next