A338226 a(n) = Sum_{i=0..n-1} i*10^i - Sum_{i=0..n-1} (n-1-i)*10^i.
0, 9, 198, 3087, 41976, 530865, 6419754, 75308643, 864197532, 9753086421, 108641975310, 1197530864199, 13086419753088, 141975308641977, 1530864197530866, 16419753086419755, 175308641975308644, 1864197530864197533, 19753086419753086422, 208641975308641975311, 2197530864197530864200
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (22,-141,220,-100).
Programs
-
Mathematica
LinearRecurrence[{22, -141, 220, -100}, {0, 9, 198, 3087}, 21] (* Amiram Eldar, Oct 26 2020 *)
-
PARI
concat(0, Vec(9*x^2 / ((1 - x)^2*(1 - 10*x)^2) + O(x^20))) \\ Colin Barker, Oct 27 2020
Formula
a(n+1) - a(n) = A033713(n+1).
a(n) = ((9*n - 11)*10^n + (9*n + 11))/81. - Andrew Howroyd, Oct 26 2020
From Colin Barker, Oct 26 2020: (Start)
G.f.: 9*x^2 / ((1 - x)^2*(1 - 10*x)^2).
a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4) for n>4.
(End)
E.g.f.: exp(x)*(11 + 9*x + exp(9*x)*(90*x - 11))/81. - Stefano Spezia, Oct 27 2020
Comments