cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bruno Zürcher

Bruno Zürcher's wiki page.

Bruno Zürcher has authored 2 sequences.

A327882 a(n) = n*(2*(n-1))! for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 4, 72, 2880, 201600, 21772800, 3353011200, 697426329600, 188305108992000, 64023737057280000, 26761922089943040000, 13488008733331292160000, 8065829222532112711680000, 5646080455772478898176000000, 4573325169175707907522560000000, 4244045756995056938180935680000000
Offset: 0

Author

Bruno Zürcher, Sep 28 2019

Keywords

Comments

Even denominators of coefficients in Taylor series expansion of 2 - 2*cos(x) - 2*x*sin(x) + x^2.
Equivalent to the even denominators of expansion of (1-cos(x))^2 + (x-sin(x))^2, which is the square of the secant length measured from the origin (0,0) to the cycloid point (1-cos(x), x-sin(x)). Note that only x^4 has the first nonzero coefficient of the series.
Numerators of the Taylor series expansion are given by A327883.
The Taylor series itself has an expansion Sum_{k>=2} (-1)^k*2*(2*k-1)/(2*k)!*x^(2*k).

Examples

			2 + x^2 - 2*cos(x) - 2*x*sin(x) = (1/4)*x^4 - (1/72)*x^6 + (1/2880)*x^8 - (1/201600)*x^10 + (1/21772800)*x^12 - ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[CoefficientList[ Series[2 - 2 Cos[x] - (2 x) Sin[x] + x^2, {x, 0, 33}], x][[ ;; ;; 2]]]
  • PARI
    a(n) = {if(n<1, n==0, (2*n)!/(2*(2*n-1)))} \\ Andrew Howroyd, Oct 09 2019

Formula

a(n) = (2*n)!/(2*(2*n-1)) = n*A010050(n-1) for n >= 1.
a(n) = A171005(2*n-1) for n >= 2. - Andrew Howroyd, Oct 09 2019
a(n) = (1/2)*(2*n)!*[x^(2*n)](1 + x*arctanh(x)) for n > 0. - Peter Luschny, Oct 09 2019
D-finite with recurrence a(n) -2*n*(2*n-3)*a(n-1)=0. - R. J. Mathar, Feb 01 2022

A290159 Numerators of coefficients in Taylor series expansion of (1+x+x^2)^(1/2).

Original entry on oeis.org

1, 1, 3, -3, 3, 15, -57, 21, 867, -1893, 1581, 8283, -76953, 34203, 361551, -869691, 6420387, 34130067, -167946159, 79445631, 1696170093, -4239570255, 4083041217, 21859150803, -442212416121, 215805655695, 2316081934929, -5909439428697, 11656013746863, 62663656767603, -322045194694305, 160129270032933, 27589357112530467
Offset: 0

Author

Bruno Zürcher, Jul 22 2017

Keywords

Comments

Denominators of the Taylor series expansion are given by A046161.
The terms after the second are divisible by 3.
The sequence of the absolute values is not monotonic.

Crossrefs

Cf. A046161 (denominators).

Programs

  • Maple
    a:= n-> numer(coeff(series(sqrt(1+x+x^2), x, n+3), x, n)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 25 2017
  • Mathematica
    Numerator[CoefficientList[Series[Sqrt[1+x+x^2], {x, 0, 32}], x]]
  • PARI
    x = 'x + O('x^40); apply(x->numerator(x), Vec((1+x+x^2)^(1/2))) \\ Michel Marcus, Jul 24 2017