A220954 Primes p such that floor(sqrt(2) + sqrt(3) + sqrt(5) + ... + sqrt(p)) is prime.
3, 5, 11, 17, 19, 73, 83, 109, 179, 211, 269, 271, 283, 373, 557, 571, 587, 607, 661, 677, 809, 953, 997, 1013, 1031, 1033, 1087, 1093, 1151, 1171, 1217, 1249, 1289, 1301, 1427, 1439, 1447, 1453, 1549, 1613, 1621, 1867, 1877, 1949, 2179, 2347, 2393, 2467
Offset: 1
Keywords
Examples
Floor(sqrt(2)+sqrt(3)+sqrt(5)+ ... +sqrt(11)+sqrt(13)+sqrt(17)) = 19 which is prime, so 17 is a member of this sequence.
Crossrefs
Cf. A062009.
Programs
-
Magma
[NthPrime(i): i in [1..400] | IsPrime(Floor(S)) where S is &+[Sqrt(NthPrime(k)): k in [1..i]]]; // Bruno Berselli, Feb 21 2013
-
Mathematica
ps = Prime[Range[1000]]; t = {}; s = 0; Do[s = s + Sqrt[p]; If[PrimeQ[Floor[s]], AppendTo[t, p]], {p, ps}]; t (* T. D. Noe, Feb 21 2013 *) With[{prs=Prime[Range[400]]},Select[prs,PrimeQ[Floor[Total[Sqrt[Take[ prs, PrimePi[ #]]]]]]&]] (* Harvey P. Dale, Feb 25 2013 *)
-
PARI
s=0;forprime(p=2,1e4,if(isprime(floor(s+=sqrt(p))),print1(p", "))) \\ Charles R Greathouse IV, Feb 21 2013