A374263 Number of distinct primitive Pythagorean triples (j^2 - k^2, 2*j*k, j^2 + k^2) where 1 <= k < j <= n.
1, 2, 4, 6, 8, 11, 15, 18, 22, 27, 31, 37, 43, 47, 55, 63, 69, 78, 86, 92, 102, 113, 121, 131, 143, 152, 164, 178, 186, 201, 217, 227, 243, 255, 267, 285, 303, 315, 331, 351, 363, 384, 404, 416, 438, 461, 477, 498
Offset: 2
Keywords
Examples
For n=5, the possible pairs for j,k are Generated Primitive As it's included on triple triple the list, is it new? j=2, k=1 -> 3, 4, 5 3, 4, 5 Yes j=3, k=1 -> 8, 6,10 3, 4, 5 No j=3, k=2 -> 5,12,13 5,12,13 Yes j=4, k=1 -> 15, 8,17 8,15,17 Yes j=4, k=2 -> 12,16,20 3, 4, 5 No j=4, k=3 -> 7,24,25 7,24,25 Yes j=5, k=1 -> 24,10,26 5,12,13 No j=5, k=2 -> 21,20,29 20,21,29 Yes j=5, k=3 -> 16,30,34 8,15,17 No j=5, k=4 -> 9,40,41 9,40,41 Yes Among these there are a(5) = 6 distinct primitive triples.
Programs
-
Python
from sympy import totient def A374263(n): return (sum(totient(n) for n in range(1,n+1,2))>>1) + sum(totient(n) for n in range(2,n+1,2)) # Chai Wah Wu, Aug 04 2024
Formula
a(n) = Sum_{i=2..n} A055034(i).
a(n) = (A049690(n) - 1)/2. - Hugo Pfoertner, Jul 16 2024
Comments