Eduardo P. Feitosa has authored 3 sequences.
A334537
a(n) is the largest n-digit number using each digit 0 to n-1 once, such that the numbers formed by its last k digits are divisible by k, (k = 1..n).
Original entry on oeis.org
0, 10, 210, 3120, 43120, 543120, 6531420, 76351240, 876351240, 9876351240
Offset: 1
a(4) = 43120 because 0, 20, 120, 3120 and 43120 are divisible by 1, 2, 3, 4 and 5, and it is the largest such number with distinct digits 0 to 4.
A331475
a(n) is the smallest n-digit number using each digit 0 to n-1 once, such that the numbers formed by its last k digits are divisible by k, (k = 1..n).
Original entry on oeis.org
0, 10, 102, 3012, 13240, 123540, 3516240, 16453720, 123567480, 9123567480
Offset: 1
a(3) = 3012 because 2, 12, 012, 3012 are divisible by 1, 2, 3, 4 and it is the least such number with distinct digits 0 to 3.
-
ok[n_] := AllTrue[Range@ IntegerLength@ n, Mod[ Mod[n, 10^#], #] == 0 &]; a[n_] := SelectFirst[ FromDigits /@ Permutations[Range[0, n-1]], # >= 10^(n-1) - 1 && ok[#] &]; Array[a, 10] (* Giovanni Resta, May 04 2020 *)
A328022
Prime numbers p such that all 4 variables of the equation (p = i * q + r) are prime, with i being the index of p, q the quotient of p/i, and r the remainder of p/i.
Original entry on oeis.org
17, 41, 367, 514275529
Offset: 1
Known values:
n | a(n) = p = i * q + r
===+==============================
1 | 17 = 7 * 2 + 3
2 | 41 = 13 * 3 + 2
3 | 367 = 73 * 5 + 2
4 | 514275529 = 27067133 * 19 + 2
-
Select[Prime@ Range[10^5], AllTrue[Join[{#1, #2}, QuotientRemainder[#1, #2]], PrimeQ] & @@ {#, PrimePi@ #} &] (* Michael De Vlieger, Oct 01 2019 *)
-
lista(nn)={my(i=1); forprime(p=3, nn, i++; if(isprime(i), my(q=p\i); if(isprime(q)&&isprime(p-q*i), print1(p, ", ")) ))} \\ Andrew Howroyd, Oct 01 2019
Comments