Eric F. O'Brien has authored 4 sequences.
A227799
Number of composites removed in each step of the Sieve of Eratosthenes for 10^10.
Original entry on oeis.org
4999999999, 1666666666, 666666666, 380952380, 207792207, 159840159, 112828348, 95013343, 74358271, 56409724, 50950713, 41311372, 36273411, 33742734, 30153115, 26170720, 23065826, 21931483, 19640105, 18256894, 17506397, 15954848, 14993294, 13813524, 12531256
Offset: 1
a(1) = 10^10 \ 2 - 1.
a(2) = 10^10 \ 3 - 10^10 \ (2*3) - 1.
a(3) = 10^10 \ 5 - 10^10 \ (2*5) - 10^10 \ (3*5) + 10^10 \ (2*3*5) - 1.
a(4) = 10^10 \ 7 - 10^10 \ (2*7) - 10^10 \ (3*7) - 10^10 \ (5*7) + 10^10 \ (2*3*7) + 10^10 \ (2*5*7) + 10^10 \ (3*5*7) - 10^10 \ (2*3*5*7) - 1.
Cf.
A133228,
A145538,
A145539,
A145540,
A145583,
A227155,
A227797,
A227798,
A145532,
A145533,
A145534,
A145535,
A145536,
A145537.
A227798
Number of composites removed in each step of the Sieve of Eratosthenes for 10^9.
Original entry on oeis.org
499999999, 166666666, 66666666, 38095237, 20779220, 15984016, 11282834, 9501331, 7435826, 5640969, 5095068, 4131143, 3627360, 3374293, 3015292, 2616982, 2306411, 2192860, 1963654, 1825278, 1750219, 1595163, 1499127, 1381337, 1253379, 1191536
Offset: 1
a(1) = 10^9 \ 2 - 1.
a(2) = 10^9 \ 3 - 10^9 \ (2*3) - 1
a(3) = 10^9 \ 5 - 10^9 \ (2*5) - 10^9 \ (3*5) + 10^9 \ (2*3*5) - 1
a(4) = 10^9 \ 7 - 10^9 \ (2*7) - 10^9 \ (3*7) - 10^9 \ (5*7) + 10^9 \ (2*3*7) + 10^9 \ (2*5*7) + 10^9 \ (3*5*7) - 10^9 \ (2*3*5*7) - 1.
A227797
Number of composites removed in each step in the Sieve of Eratosthenes for 10^8.
Original entry on oeis.org
49999999, 16666666, 6666666, 3809523, 2077920, 1598400, 1128284, 950133, 743581, 564099, 509508, 413103, 362709, 337382, 301484, 261684, 230683, 219393, 196552, 182782, 175351, 159910, 150351, 138581, 125778, 119552, 116075, 110630, 107564, 102739, 90485
Offset: 1
For n = 3, prime(n) = 5, a(n) = 6666666: 5 divides 10^8 20000000 times. 10 is the least common multiple of 2 (prime(1)) and 5 and 15 is the least common multiple of 3 (prime(2)) and 5; thus [10^8 / 10] multiples of 5 and [10^8 / 15] multiples of 5 have already been eliminated by a(1) and a(2), and thereby respectively reduce a(3) by 10000000 and 6666666 offset by [10^8 / 30] multiples of 5 which would otherwise excessively reduce a(3) by 3333333 because 30 is the least common multiple of 2, 3 and 5. a(3) is further reduced by 1 as 5 itself is not eliminated.
A227155
Number of composites removed in each step of the Sieve of Eratosthenes for 10^7.
Original entry on oeis.org
4999999, 1666666, 666666, 380952, 207791, 159839, 112829, 95016, 74356, 56405, 50949, 41317, 36293, 33780, 30205, 26228, 23123, 21975, 19655, 18249, 17467, 15871, 14876, 13668, 12358, 11710, 11344, 10779, 10451, 9955, 8748, 8398, 7956, 7768, 7181, 7034, 6724
Offset: 1
For n = 2, prime(n) = 3, a(n) = 1666666: 3 divides 10^7 3333333 times.
6 is the common multiple of 2 and 3, thus 10^7 \ 6 multiples of 3 (1666666) have already been eliminated by a(1).
3333333 less 1666666 = 1666667, less 1 because 3 itself is not eliminated.
Thus a(2) = 3333333 - 1666666 - 1 = 1666666.
Comments