cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Erik Pelttari

Erik Pelttari's wiki page.

Erik Pelttari has authored 2 sequences.

A262931 Numbers k such that 6 is a square mod k.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 15, 19, 23, 25, 29, 30, 38, 43, 46, 47, 50, 53, 57, 58, 67, 69, 71, 73, 75, 86, 87, 94, 95, 97, 101, 106, 114, 115, 125, 129, 134, 138, 139, 141, 142, 145, 146, 149, 150, 159, 163, 167, 173, 174, 190, 191, 193, 194, 197, 201, 202, 211, 213
Offset: 1

Author

Erik Pelttari, Oct 04 2015

Keywords

Examples

			6^2 == 6 (mod 15), so 15 is a term.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | exists(t){x : x in ResidueClassRing(n) | x^2 eq 6}]; // Vincenzo Librandi, Oct 05 2015
  • Maple
    with(numtheory):
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1))
          while mroot(6, 2, k)=FAIL do od; k
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 24 2017
  • Mathematica
    Join[{1}, Table[If[Reduce[x^2 == 6, Modulus->n] === False, Null, n], {n, 2, 300}]//Union] (* Vincenzo Librandi, Oct 05 2015 *)
  • PARI
    for(n=1, 300, if (issquare(Mod(6, n)), print1(n", "))); \\ Altug Alkan, Oct 04 2015
    

A262932 Numbers k such that 7 is a square mod k.

Original entry on oeis.org

1, 2, 3, 6, 7, 9, 14, 18, 19, 21, 27, 29, 31, 37, 38, 42, 47, 53, 54, 57, 58, 59, 62, 63, 74, 81, 83, 87, 93, 94, 103, 106, 109, 111, 113, 114, 118, 126, 131, 133, 137, 139, 141, 149, 159, 162, 166, 167, 171, 174, 177, 186, 189, 193, 197, 199, 203, 206, 217, 218, 222
Offset: 1

Author

Erik Pelttari, Oct 04 2015

Keywords

Examples

			7^2 == 7 (mod 14), so 14 is a term.
5^2 == 7 (mod 18) and 13^2 == 7 (mod 18), so 18 is a term.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | exists(t){x : x in ResidueClassRing(n) | x^2 eq 7}]; // Vincenzo Librandi, Oct 05 2015
  • Maple
    with(numtheory):
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1))
          while mroot(7, 2, k)=FAIL do od; k
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 24 2017
  • Mathematica
    Join[{1}, Table[If[Reduce[x^2 == 7, Modulus->n] === False, Null, n], {n, 2, 300}]//Union] (* Vincenzo Librandi, Oct 05 2015 *)
  • PARI
    for(n=1, 300, if (issquare(Mod(7, n)), print1(n", "))); \\ Altug Alkan, Oct 04 2015