cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Evan Lee

Evan Lee's wiki page.

Evan Lee has authored 2 sequences.

A344008 Triangle of numerators corresponding to A344007.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 5, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Author

Evan Lee, Jun 09 2021

Keywords

Examples

			The triangle underlying A344007 begins:
  1
  1/2,   1/2
  1/6,   1/3,   1/2
  1/6,   1/4,   1/4,   1/3
  2/15,  1/6,   1/5,   1/4,   1/4
  1/12,  2/15,  1/6,   1/6,   1/5,   1/4
  1/12,  3/28,  2/15,  1/7,   1/6,   1/6,   1/5
  3/40,  1/12,  3/28,  1/8,   2/15,  1/7,   1/6,   1/6
  1/18,  3/40,  1/12,  3/28,  1/9,   1/8,   2/15,  1/7,  1/6
  1/18,  1/15,  3/40,  1/12,  1/10,  3/28,  1/9,   1/8,  2/15,  1/7
  ...
The numerators are:
  1
  1, 1
  1, 1, 1
  1, 1, 1, 1
  2, 1, 1, 1, 1
  1, 2, 1, 1, 1, 1
  1, 3, 2, 1, 1, 1, 1
  3, 1, 3, 1, 2, 1, 1, 1
  1, 3, 1, 3, 1, 1, 2, 1, 1
  1, 1, 3, 1, 1, 3, 1, 1, 2, 1
  ...
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow);); drow = apply(numerator, row); for (k=1, #drow, print1(drow[k], ", ")););} \\ Michel Marcus, Jun 09 2021

Extensions

Corrected by Hugo Pfoertner and Michel Marcus, Jun 09 2021

A344007 Denominators of triangle formed by beginning with 1 on row 1, then producing row n by replacing the largest value on row n-1, k, by 1/n and k - 1/n, and arranging the entries in order from smallest to largest.

Original entry on oeis.org

1, 2, 2, 6, 3, 2, 6, 4, 4, 3, 15, 6, 5, 4, 4, 12, 15, 6, 6, 5, 4, 12, 28, 15, 7, 6, 6, 5, 40, 12, 28, 8, 15, 7, 6, 6, 18, 40, 12, 28, 9, 8, 15, 7, 6, 18, 15, 40, 12, 10, 28, 9, 8, 15, 7, 77, 18, 15, 40, 12, 11, 10, 28, 9, 8, 15, 20, 77, 18, 15, 40, 12, 12, 11, 10, 28, 9, 8
Offset: 1

Author

Evan Lee, Jun 08 2021

Keywords

Comments

If there is more than one copy of the largest entry in row n-1, only one copy is changed.
For a somewhat similar triangle, see Leibniz's Harmonic Triangle A003506. - N. J. A. Sloane, Jun 09 2021

Examples

			The triangle's first 10 rows:
  1
  1/2,   1/2
  1/6,   1/3,   1/2
  1/6,   1/4,   1/4,   1/3
  2/15,  1/6,   1/5,   1/4,   1/4
  1/12,  2/15,  1/6,   1/6,   1/5,   1/4
  1/12,  3/28,  2/15,  1/7,   1/6,   1/6,   1/5
  3/40,  1/12,  3/28,  1/8,   2/15,  1/7,   1/6,   1/6
  1/18,  3/40,  1/12,  3/28,  1/9,   1/8,   2/15,  1/7,   1/6
  1/18,  1/15,  3/40,  1/12,  1/10,  3/28,  1/9,   1/8,   2/15,  1/7
  ...
The denominators are:
   1
   2,  2,
   6,  3, 2,
   6,  4, 4, 3,
  15,  6, 5, 4, 4,
  12, 15, 6, 6, 5, 4,
  ...
		

Crossrefs

Cf. A003506.
For numerators see A344008.

Programs

  • PARI
    lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow);); drow = apply(denominator, row); for (k=1, #drow, print1(drow[k], ", ")););} \\ Michel Marcus, Jun 09 2021