cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Guenter Pilz

Guenter Pilz's wiki page.

Guenter Pilz has authored 3 sequences.

A361472 Size of the symmetric differences of {1,2,3,4,5}, {2,4,6,8,10}, ..., {n,2n,3n,4n,5n}.

Original entry on oeis.org

5, 6, 7, 8, 5, 10, 15, 16, 17, 18, 23, 24, 29, 30, 31, 32, 37, 42, 47, 48, 49, 50, 55, 56, 53, 54, 55, 56, 61, 58, 63, 64, 65, 66, 63, 64, 69, 70, 71, 72, 77, 82, 87, 88, 89, 90, 95, 96, 101, 102, 103, 104, 109, 114, 111, 112, 113, 114, 119, 120, 125, 126, 127
Offset: 1

Author

Guenter Pilz, May 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    delta[l_, m_] := Complement[Join[l, m], Intersection[l, m]];
    Nabl[s_, n_] := (d = {}; Do[d = delta[d, s*j], {j, Range[n]}]; d);
    Table[Length[Nabl[Range[1, 5], n]], {n, 100}]

Formula

G.f.: x*(x^59 +5*x^58 +x^57 +x^56 +x^55 -3*x^54 +5*x^53 +5*x^52 +x^51 +x^50 +x^49 +5*x^48 +x^47 +5*x^46 +x^45 +x^44 +x^43 +5*x^42 +5*x^41 +5*x^40 +x^39 +x^38 +x^37 +5*x^36 +x^35 -3*x^34 +x^33 +x^32 +x^31 +5*x^30 -3*x^29 +5*x^28 +x^27 +x^26 +x^25 -3*x^24 +x^23 +5*x^22 +x^21 +x^20 +x^19 +5*x^18 +5*x^17 +5*x^16 +x^15 +x^14 +x^13 +5*x^12 +x^11 +5*x^10 +x^9 +x^8 +x^7 +5*x^6 +5*x^5 -3*x^4 +x^3 +x^2 +x +5) / (x^61 -x^60 -x +1). - Alois P. Heinz, May 17 2023

A361471 Size of the symmetric difference of {1,2,3,4}, {2,4,6,8}, ..., {n,2n,3n,4n}.

Original entry on oeis.org

4, 4, 4, 4, 8, 12, 16, 16, 16, 16, 20, 20, 24, 24, 24, 24, 28, 32, 36, 36, 36, 36, 40, 40, 44, 44, 44, 44, 48, 52, 56, 56, 56, 56, 60, 60, 64, 64, 64, 64, 68, 72, 76, 76, 76, 76, 80, 80, 84, 84, 84, 84, 88, 92, 96, 96, 96, 96, 100, 100, 104, 104, 104, 104, 108
Offset: 1

Author

Guenter Pilz, May 17 2023

Keywords

Crossrefs

Cf. A361458.

Programs

  • Mathematica
    delta[l_, m_] := Complement[Join[l, m], Intersection[l, m]];
    Nabl[s_, n_] := (d = {}; Do[d = delta[d, s*j], {j, Range[n]}]; d);
    Table[Length[Nabl[Range[1, 4], n]], {n, 100}]

Formula

G.f.: 4*x*(x^10+x^6+x^5+x^4+1)/(x^13-x^12-x+1). - Alois P. Heinz, May 17 2023

A361458 Size of the symmetric difference of {1,2,3}, {2,4,6}, ..., {n,2n,3n}.

Original entry on oeis.org

3, 4, 3, 4, 7, 8, 11, 12, 11, 12, 15, 16, 19, 20, 19, 20, 23, 24, 27, 28, 27, 28, 31, 32, 35, 36, 35, 36, 39, 40, 43, 44, 43, 44, 47, 48, 51, 52, 51, 52, 55, 56, 59, 60, 59, 60, 63, 64, 67, 68, 67, 68, 71, 72, 75, 76, 75, 76, 79, 80, 83, 84, 83, 84, 87, 88, 91
Offset: 1

Author

Guenter Pilz, May 17 2023

Keywords

Comments

a(n) is also the terms of (x+x^2+x^3) + (x^2+x^4+x^6) + ... + (x^n+x^2n+x^3n) in GF(2)[x].

Crossrefs

Cf. A361471.

Programs

  • Mathematica
    delta[l_, m_] := Complement[Join[l, m], Intersection[l, m]];
    Nabl[s_, n_] := (d = {}; Do[d = delta[d, s*j], {j, Range[n]}]; d);
    Table[Length[Nabl[Range[1, 3], n]], {n, 100}]
  • PARI
    a(n) = {my(m=0);for(k = 0,n-1,m = bitxor(m, 2^k+2^(2*k+1)+2^(3*k+2))); hammingweight(m)} \\ Thomas Scheuerle, May 17 2023

Formula

G.f.: x*(x^5+3*x^4+x^3-x^2+x+3)/(x^7-x^6-x+1). - Alois P. Heinz, May 17 2023
6*a(n) = 1 -(-1)^n +8*n +8*A103368(n-1). - R. J. Mathar, Jan 11 2024