cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Isaac S. Friedman

Isaac S. Friedman's wiki page.

Isaac S. Friedman has authored 2 sequences.

A279034 The sum of the necessary diagonal movements from each square unit of an n X n+1 rectangle to reach any of the corners of the rectangle.

Original entry on oeis.org

0, 2, 16, 32, 76, 114, 204, 276, 428, 542, 772, 940, 1264, 1494, 1928, 2232, 2792, 3178, 3880, 4360, 5220, 5802, 6836, 7532, 8756, 9574, 11004, 11956, 13608, 14702, 16592, 17840, 19984, 21394, 23808, 25392, 28092, 29858, 32860, 34820, 38140, 40302, 43956
Offset: 1

Author

Isaac S. Friedman, Dec 03 2016

Keywords

Comments

All terms in the sequence are even, because the rectangles are symmetric. A single move consists of a movement by one row and one column.

Examples

			a(3) = (13/24)(3^3) + ((3*(3 mod 2)+1)/8)*(3^2) - ((28-9*(3 mod 2))/24)*(3) - (3 mod 4)/4 = (13/24)(3^3) + (1/2)(3^2) - (19/24)(3) - (3/4) = 16.
Illustration of a(3):
.
.       3 columns
.     +---+---+---+
.   4 | 0 | 3 | 0 |  0 + 3 + 0 = 3
.     +---+---+---+
.   r | 2 | 1 | 2 |  2 + 1 + 2 = 5
.   o +---+---+---+
.   w | 2 | 1 | 2 |  2 + 1 + 2 = 5
.   s +---+---+---+
.     | 0 | 3 | 0 |  0 + 3 + 0 = 3
.     +---+---+---+
.
Adding the sums for the rows, a(3) = 3 + 5 + 5 + 3 = 16.
		

Programs

  • Java
    See Friedman link
  • Mathematica
    CoefficientList[ Series[( 2(x + 7x^2 + 6x^3 + 8x^4 + 3x^5 + x^6))/((x -1)^4 (x + 1)^3 (x^2 +1)), {x, 0, 45}], x] (* or *)
    LinearRecurrence[{1, 2, -2, 0, 0, -2, 2, 1, -1}, {0, 2, 16, 32, 76, 114, 204, 276, 428}, 45] (* Robert G. Wilson v, Dec 13 2016 *)

Formula

Empirical g.f.: 2*x^2*(1 + 7*x + 6*x^2 + 8*x^3 + 3*x^4 + x^5) / ((1 - x)^4*(1 + x)^3*(1 + x^2)). - Colin Barker, Dec 04 2016
Empirical: a(n) = (13/24)*(n^3) + ((3*(n mod 2) + 1)/8)*(n^2) - ((28 - 9*(n mod 2))/24)*(n) - (n mod 4)/4.

A269130 a(n) = n + (n base 2 regarded as a decimal number).

Original entry on oeis.org

0, 2, 12, 14, 104, 106, 116, 118, 1008, 1010, 1020, 1022, 1112, 1114, 1124, 1126, 10016, 10018, 10028, 10030, 10120, 10122, 10132, 10134, 11024, 11026, 11036, 11038, 11128, 11130, 11140, 11142, 100032, 100034, 100044, 100046, 100136, 100138, 100148, 100150, 101040
Offset: 0

Author

Isaac S. Friedman, Feb 19 2016

Keywords

Comments

All terms in this sequence are even, because every even number produces an even binary number (ends with 0) and every odd number produces an odd binary number (ends with 1).

Examples

			a(4) = convert_to_binary(4) + 4 = 100 + 4 = 104.
		

Crossrefs

Cf. A000027 (counting numbers), A007088 (binary numbers).
Cf. A127906 (multiplicated), A228071 (subtracted).

Programs

Formula

a(n) = A007088(n) + n.