A322332 'Geobonnaci' sequence: a(1)=a(2)=1, thereafter a(n) = round( 2 * sqrt(a(n-1) * a(n-2)) ).
1, 1, 2, 3, 5, 8, 13, 20, 32, 51, 81, 129, 204, 324, 514, 816, 1295, 2056, 3263, 5180, 8222, 13052, 20718, 32888, 52206, 82872, 131551, 208824, 331488, 526204, 835297, 1325951, 2104816, 3341187, 5303804, 8419264, 13364749, 21215216, 33677057, 53458995
Offset: 1
Keywords
Examples
For n=6, a(5) is 5 and a(4) is 3. 3 * 5 is 15 and twice the square root of 15 is just above 7.745. This rounds to 8, so a(6) is 8.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Java
public static int G(int n) { if(n==1) {return 1;} if(n==2) {return 1;} return Math.round(2*Math.sqrt(G(n-1)*G(n-2))); //Recursive definition } \\ James E Davis, Dec 03 2018
-
Maple
a:=proc(n) option remember: `if`(n<3,1,round(2*sqrt(a(n-1)*a(n-2)))) end: seq(a(n),n=1..50); # Muniru A Asiru, Dec 20 2018
-
Mathematica
a[1] =1 ; a[2] = 1; a[n_] := a[n] = Round[2 * Sqrt[a[n-1] * a[n-2]]]; Array[a, 40] (* Amiram Eldar, Dec 04 2018 *) nxt[{a_,b_}]:={b,Round[2*Sqrt[a*b]]}; NestList[nxt,{1,1},40][[;;,1]] (* Harvey P. Dale, Dec 04 2024 *)
-
PARI
seq(n)={my(v=vector(n)); v[1]=v[2]=1; for(n=3, n, v[n]=round(2*sqrt(v[n-1]*v[n-2]))); v} \\ Andrew Howroyd, Dec 03 2018
Formula
a(n) ~ c * 2^(2*n/3), where c = 0.50182724761947676453167569419757096890286053854137516239835895319268638286015... - Vaclav Kotesovec, Dec 20 2018
Comments