A321067 Considering Pythagorean triple (a,b,c) with a < b < c, least a such that there exists a primitive triple where c - b is the n-th term of A096033.
3, 8, 20, 33, 48, 65, 88, 119, 140, 204, 207, 252, 297, 336, 396, 429, 540, 555, 616, 696, 731, 832, 893, 1036, 1113, 1140, 1248, 1311, 1428, 1525, 1692, 1748, 1809, 1960, 2059, 2184, 2325, 2508, 2576, 2739, 2832
Offset: 1
Keywords
Examples
a(2) = 8 because in the primitive triple (8,15,17), c - b = A096033(2) = 2 and no smaller a yields a primitive triple where a < b < c and c - b = 2.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nmax = 100; kmax = 2; A096033 = Union[2 Range[nmax]^2, (2 Range[0, Ceiling[nmax/Sqrt[2]]]+1)^2]; r[n_, k_] := Module[{a, b, c}, {a, b, c} /. {ToRules[Reduce[0 < a < b < c && c - b == A096033[[n]] && a^2 + b^2 == c^2, {a, b, c}, Integers] /. C[1] -> k]}]; a[n_] := a[n] = SelectFirst[Flatten[Table[r[n, k], {k, 1, kmax}], 1], GCD @@ # == 1 &] // First; Table[Print[n, " ", a[n]]; a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 01 2019 *)