A241773 A sequence constructed by greedily sampling the Gauss-Kuzmin distribution log_2[(i+1)^2/(i^2+2*i)] to minimize discrepancy.
1, 2, 3, 1, 4, 1, 5, 2, 1, 6, 1, 7, 1, 2, 3, 1, 8, 1, 9, 2, 1, 4, 1, 10, 1, 3, 2, 1, 11, 1, 2, 5, 1, 12, 1, 3, 1, 2, 4, 1, 13, 1, 2, 6, 1, 14, 1, 3, 1, 2, 15, 1, 16, 1, 2, 4, 1, 3, 1, 5, 7, 1, 2, 1, 17, 1, 2, 3, 1, 18, 1, 8, 2, 1, 4, 1, 6, 1, 2, 3, 1, 5, 1, 19
Offset: 1
Examples
Example from _Jwalin Bhatt_, Jun 10 2025: (Start) Let p(k) denote the probability of k and c(k) denote the number of occurrences of k among the first n-1 terms; then the expected number of occurrences of k among n random terms is given by n*p(k). We subtract the actual occurrences c(n) from the expected occurrences and pick the one with the highest value. | n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice | |---|---------------|---------------|---------------|--------| | 1 | 0.415 | 0.169 | 0.093 | 1 | | 2 | -0.169 | 0.339 | 0.186 | 2 | | 3 | 0.245 | -0.490 | 0.279 | 3 | | 4 | 0.660 | -0.320 | -0.627 | 1 | (End)
Links
- Jonathan Deane, Table of n, a(n) for n = 1..10000
- Jonathan Deane, An integer sequence whose members obey a given p.d.f.
Programs
-
Maple
pdf := i -> -log[2](1 - 1/(i+1)^2); gen_seq := proc(n) local i, j, N, A, u, mm, ndig; ndig := 40; N := 'N'; for i from 1 to n do N[i] := 0; end do; A := 'A'; A[1] := 1; N[1] := 1; for i from 2 to n do u := 'u'; for j from 1 to n do u[j] := i*pdf(j) - N[j]; end do; mm := max_maxind(evalf(convert(u, list), ndig)); if mm[3] then A[i] := mm[1]; N[mm[1]] := N[mm[1]] + 1; else return(); end if; end do; return(convert(A, list)); end: max_maxind := proc(inl) local uniq, mxind, mx, i; uniq := `true`; if nops(inl) = 1 then return([1, inl[1], uniq]); end if; mxind := 1; mx := inl[1]; for i from 2 to nops(inl) do if inl[i] > mx then mxind := i; mx := inl[i]; uniq := `true`; elif inl[i] = mx then uniq := `false`; end if; end do; return([mxind, mx, uniq]); end: gen_seq(100);
-
Mathematica
probCountDiff[j_, k_, count_] := k*-Log[2, 1 - (1/((j + 1)^2))] - Lookup[count, j, 0] samplePDF[n_] := Module[{coeffs, unreachedVal, counts, k, probCountDiffs, mostProbable}, coeffs = ConstantArray[0, n]; unreachedVal = 1; counts = <||>; Do[probCountDiffs = Table[probCountDiff[i, k, counts], {i, 1, unreachedVal}]; mostProbable = First@FirstPosition[probCountDiffs, Max[probCountDiffs]]; If[mostProbable == unreachedVal, unreachedVal++]; coeffs[[k]] = mostProbable; counts[mostProbable] = Lookup[counts, mostProbable, 0] + 1; , {k, 1, n}]; coeffs] A241773 = samplePDF[120] (* Jwalin Bhatt, Jun 04 2025 *)
-
Python
from fractions import Fraction def prob_count_diff(j, k, count): return - ((1 - Fraction(1,(j+1)*(j+1)))**k) * (2**count) def sample_pdf(n): coeffs, unreached_val, counts = [], 1, {} for k in range(1, n+1): prob_count_diffs = [prob_count_diff(i, k, counts.get(i, 0)) for i in range(1, unreached_val+1)] most_probable = prob_count_diffs.index(max(prob_count_diffs)) + 1 unreached_val += most_probable == unreached_val coeffs.append(most_probable) counts[most_probable] = counts.get(most_probable, 0) + 1 return coeffs A241773 = sample_pdf(120) # Jwalin Bhatt, Feb 09 2025
Comments