A362242 Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (k,n-k) using steps (i,j) with i,j>=0 and gcd(i,j)=1.
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 17, 10, 1, 1, 15, 39, 39, 15, 1, 1, 21, 76, 111, 76, 21, 1, 1, 28, 135, 266, 266, 135, 28, 1, 1, 36, 222, 566, 757, 566, 222, 36, 1, 1, 45, 346, 1100, 1876, 1876, 1100, 346, 45, 1, 1, 55, 515, 1997, 4197, 5321, 4197, 1997, 515, 55, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 10, 17, 10, 1; 1, 15, 39, 39, 15, 1; ... There are three paths across a one by one lattice. There are six across a two by one lattice.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(min(n, k)=0, 1, add(add( `if`(igcd(i, j)=1, b(n-i, k-j), 0), j=0..k), i=0..n)) end: T:= (n, k)-> b(k, n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 26 2023
-
Mathematica
b[n_, k_] := b[n, k] = If[Min[n, k] == 0, 1, Sum[Sum[If[GCD[i, j] == 1, b[n - i, k - j], 0], {j, 0, k}], {i, 0, n}]]; T[n_, k_] := b[k, n - k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 16 2025, after Alois P. Heinz *)
-
PARI
T(n)={my(v=vector(n)); v[1]=[1]; for(n=2, #v, v[n]=vector(n, k, sum(i=0, k-1, sum(j=0,n-k, if(gcd(i,j)==1, v[n-i-j][k-i] ) )))); v} { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Apr 12 2023
Comments