cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lawrence Pepper

Lawrence Pepper's wiki page.

Lawrence Pepper has authored 1 sequences.

A334768 Self-convolution of A061397.

Original entry on oeis.org

0, 0, 0, 0, 4, 12, 9, 20, 30, 28, 67, 0, 70, 44, 115, 52, 188, 0, 284, 68, 284, 76, 405, 0, 714, 92, 573, 0, 604, 0, 1182, 116, 668, 124, 1271, 0, 1960, 0, 795, 148, 1642, 0, 2680, 164, 1570, 172, 2183, 0, 3974, 188, 3024, 0, 2706, 0, 5354, 212, 2842, 0, 3799
Offset: 0

Author

Lawrence Pepper, May 10 2020

Keywords

Comments

If any term of even index greater than 2 is equal to 0 then the Goldbach conjecture would be disproved.

Crossrefs

Programs

  • Maple
    a:= n-> (f-> add(f(j)*f(n-j), j=0..n))(k-> `if`(isprime(k), k, 0)):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 11 2020
  • Mathematica
    Table[Sum[If[PrimeQ[k], k, 0]*If[PrimeQ[n-k], n-k, 0], {k, 0, n}], {n, 0, 100}] (* Vaclav Kotesovec, May 10 2020 *)
  • PARI
    P(n) = if (isprime(n), n);
    a(n) = sum(k=1, n-1, P(k)*P(n-k)); \\ Michel Marcus, May 10 2020
  • Python
    def a(n):
        A061397 = [0]+[factorial(2*i-1)%(i**2) for i in range(1,n+1)]
        sum = 0
        for i in range(1,n):
            sum += A061397[i] * A061397[n-i]
        return sum
    

Formula

a(n) = Sum_{k=1..n-1} P(k)*P(n-k) where P(k) = A061397(k).