A383938 a(n) is the least positive integer k such that b(2*j) is prime for 1 <= j <= n but not prime for j = n+1, where b(1) = k and b(m+1) = b(m) + prime(m) for m >= 1.
2, 5, 21, 129, 69, 1, 51, 23991, 171, 1371, 3, 322141431, 1431357020859
Offset: 0
Examples
a(n) = k, b(m+1) = b(m) + prime(m); b(1) = k For n = 0, a(0) = 2; b(m+1) = b(m) + prime(m): [2] For n = 1, a(1) = 5; b(m+1) = b(m) + prime(m): [5, 7(5+2)] For n = 2, a(2) = 21; b(m+1) = b(m) + prime(m): [21, 23(21+2), 26(23+3), 31(26+5)] For n = 3, a(3) = 129; b(m+1) = b(m) + prime(m): [129, 131(129+2), 134(131+3), 139(134+5), 146(139+7), 157(146+11)] For n = 4, a(4) = 69; b(m+1) = b(m) + prime(m): [69, 71(69+2), 74(71+3), 79(74+5), 86(79+7), 97(86+11), 110(97+13), 127(110+17)] For n = 5, a(5) = 1; b(m+1) = b(m) + prime(m): [1, 3(1+2), 6(3+3), 11(6+5), 18(11+7), 29(18+11), 42(29+13), 59(42+17), 78(59+19), 101(78+23)] For a(n), even-indexed term is prime. e.g. for a(3) = 129 [129, 131, 134, 139, 146, 157], even indexed terms 131, 139, 157 are primes.
Programs
-
PARI
a(n) = my(vp=concat(2, vector(n+1, i, sum(k=1, 2*i+1, prime(k)))), v=concat(vector(n, i, 1), 0), k=1); while (apply(ispseudoprime, vector(n+1, i, vp[i]+k)) != v, k++); k; \\ Michel Marcus, Aug 19 2025
Extensions
a(11) from Michel Marcus, Aug 19 2025
a(12) from Pontus von Brömssen, Aug 19 2025
Comments