cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Pedro Antonio

Pedro Antonio's wiki page.

Pedro Antonio has authored 1 sequences.

A263318 Number of aperiodic necklaces (Lyndon words) with 9 black beads and n white beads.

Original entry on oeis.org

0, 1, 5, 18, 55, 143, 333, 715, 1430, 2700, 4862, 8398, 13995, 22610, 35530, 54477, 81719, 120175, 173583, 246675, 345345, 476901, 650325, 876525, 1168695, 1542684, 2017356, 2615085, 3362260, 4289780, 5433714, 6835972, 8544965, 10616463, 13114465, 16112057
Offset: 0

Author

Criel Merino, Pedro Antonio, Oct 14 2015

Keywords

Comments

A row of triangle A051168.

Programs

  • Mathematica
    CoefficientList[Series[(x (x^4 - x^3 + 3*x^2 - x + 1))/((x^2 + x + 1)^3 (1 - x)^9), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 15 2015 *)
    CoefficientList[Series[((-1+x^3)^-3-(-1+x)^-9)/9,{x,0,40}],x] (* Herbert Kociemba, Oct 16 2016 *)
    LinearRecurrence[{6,-15,23,-33,51,-64,63,-63,64,-51,33,-23,15,-6,1},{0,1,5,18,55,143,333,715,1430,2700,4862,8398,13995,22610,35530},40] (* Harvey P. Dale, Feb 10 2023 *)
  • PARI
    a(n)= (1/(n+9))*sumdiv(gcd(n+9,9), d, moebius(d)*binomial( (n+9)/d , 9/d )); \\ Michel Marcus, Oct 14 2015
    
  • Python
    from sympy import mobius, binomial, gcd, divisors
    print([sum(mobius(d) * binomial((n + 9)//d, 9//d) for d in divisors(gcd(n + 9, 9))) // (n + 9) for n in range(51)]) # Indranil Ghosh, Mar 26 2017

Formula

a(n) = (1/(n+9))*Sum_{d divides gcd(n+9,9)} mu(d)*binomial((n+9)/d, 9/d).
G.f.: (x*(x^4-x^3+3*x^2-x+1))/((x^2+x+1)^3*(1-x)^9).
G.f.: ((-1+x^3)^-3-(-1+x)^-9)/9. - Herbert Kociemba, Oct 16 2016

Extensions

More terms from Michel Marcus, Oct 14 2015