A374020 Number of solutions to a^2 + d^2 = b^2 + c^2 with 1 <= a < b < c < d <= n.
0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5, 7, 9, 10, 12, 15, 18, 23, 26, 29, 33, 39, 43, 48, 54, 60, 65, 74, 79, 87, 96, 105, 114, 122, 129, 140, 151, 162, 171, 185, 194, 210, 223, 233, 247, 264, 277, 293, 308, 323, 338, 360, 376, 392, 407, 425, 444, 468, 484
Offset: 1
Keywords
Examples
For n = 9 the a(9) = 2 solutions are 1^2 + 8^2 = 4^2 + 7^2 = 65 and 2^2 + 9^2 = 6^2 + 7^2 = 85. For n = 18 three of the a(18) = 18 solutions sum up to 325: 1^2 + 18^2 = 6^2 + 17^2 = 10^2 + 15^2.
Links
Programs
-
C
#include
#define N 10000ULL typedef unsigned long long ull_t; ull_t Sums[2 * N * N]; int main() { ull_t sol = 0; for (ull_t i = 1; i < N; i++) for (ull_t j = i + 1; j <= N; j++) sol += Sums[i * i + j * j]++; printf("%llu \n", sol); } -
Python
from itertools import count, islice from collections import Counter def A374020_gen(): # generator of terms c, s = 0, Counter() for n in count(1): n2 = n**2 for i in range(1,n): c += s[m:=i**2+n2] s[m] += 1 yield c A374020_list = list(islice(A374020_gen(),20)) # Chai Wah Wu, Jul 18 2024
Comments