A337879 a(n) is the length of the n-th line segment to draw the squares of the Fibonacci spiral without lifting the pencil, including superpositions.
1, 1, 1, 2, 1, 2, 3, 2, 3, 5, 3, 5, 8, 5, 8, 13, 8, 13, 21, 13, 21, 34, 21, 34, 55, 34, 55, 89, 55, 89, 144, 89, 144, 233, 144, 233, 377, 233, 377, 610, 377, 610, 987, 610, 987, 1597, 987, 1597, 2584, 1597, 2584, 4181, 2584, 4181, 6765, 4181, 6765, 10946
Offset: 1
Links
- Victor Kelly, Animated GIF
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,1).
Formula
a(n) = Fibonacci(A008611(n+2)). - David A. Corneth, Sep 28 2020
G.f.: -x*(x^5+x^3+x^2+x+1)/(x^6+x^3-1). - Alois P. Heinz, Sep 29 2020
a(n) = a(n-3) + a(n-6) for n > 6. - Jinyuan Wang, Sep 30 2020
Extensions
More terms from Alois P. Heinz, Sep 29 2020
Comments