A000044 Dying rabbits: a(0) = 1; for 1 <= n <= 12, a(n) = Fibonacci(n); for n >= 13, a(n) = a(n-1) + a(n-2) - a(n-13).
1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 232, 375, 606, 979, 1582, 2556, 4130, 6673, 10782, 17421, 28148, 45480, 73484, 118732, 191841, 309967, 500829, 809214, 1307487, 2112571, 3413385, 5515174, 8911138, 14398164, 23263822, 37588502, 60733592, 98130253, 158553878, 256183302, 413927966, 668803781, 1080619176, 1746009572, 2821113574, 4558212008
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 + 21*x^8 + 34*x^9 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
- V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
- Diyath Pannipitiya, To Symbolic Dynamics Through The Thue-Morse Sequence, arXiv:2402.07015 [math.DS], 2024.
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
Programs
-
Magma
[ n eq 1 select 1 else n le 13 select Fibonacci(n-1) else Self(n-1)+Self(n-2)-Self(n-13): n in [1..50] ]; // Klaus Brockhaus, Dec 21 2010
-
Maple
with(combinat); f:=proc(n) option remember; if n=0 then RETURN(1); fi; if n <= 12 then RETURN(fibonacci(n)); fi; f(n-1)+f(n-2)-f(n-13); end;
-
Mathematica
CoefficientList[Series[1/(1 - z - z^3 - z^5 - z^7 - z^9 - z^11), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *) LinearRecurrence[{1,1,0,0,0,0,0,0,0,0,0,0,-1},{1,1,1,2,3,5,8,13,21,34,55,89,144},100] (* Harvey P. Dale, Mar 24 2012 *)
-
PARI
Vec(1/(1-z-z^3-z^5-z^7-z^9-z^11)+O(z^50)) \\ Charles R Greathouse IV, Jun 10 2011
Formula
G.f.: 1/(1 - z - z^3 - z^5 - z^7 - z^9 -z^11).
G.f. A(x) = 1 / (1 - x / (1 - x^2 / (1 + x^10 / (1 + x^2 / (1 - x^2 / (1 + x^6 / (1 + x^2 / (1 - x^2 / (1 + x^2))))))))). - Michael Somos, Jan 04 2013
For n >= 11, a(n) = a(n-1) + a(n-3) + a(n-5) + a(n-7) + a(n-9) + a(n-11). - Eric M. Schmidt, Sep 04 2014
Extensions
G.f. corrected by Charles R Greathouse IV, Jun 10 2011
Comments