A191869 First differences of the dying rabbits sequence A000044.
0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 143, 231, 373, 603, 974, 1574, 2543, 4109, 6639, 10727, 17332, 28004, 45248, 73109, 118126, 190862, 308385, 498273, 805084, 1300814, 2101789, 3395964, 5487026, 8865658, 14324680, 23145090, 37396661, 60423625
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1).
Crossrefs
Cf. A000044.
Programs
-
Mathematica
A000044 = CoefficientList[Series[1/(1 - z - z^3 - z^5 - z^7 - z^9 - z^11), {z, 0, 200}], z]; GetDiff[seq_List] := Drop[seq, 1] - Drop[seq, -1]; A191869 = GetDiff[A000044]
-
PARI
A191869_list=Vec((-x^11-x^9-x^7-x^5-x^3)/(x^11+x^9+x^7+x^5+x^3+x-1)+O(x^99)) /* returns a list of the first 96 nonzero terms, a(3)...a(99) */
-
PARI
A191869(n)=polcoeff((1+x^2+x^4+x^6+x^8)/(1-x-x^3-x^5-x^7-x^9-x^11+O(x^max(1,n-2))),n-3) \\ M. F. Hasler, Jun 19 2011
Formula
G.f.: x^3(1 + x + x^2 + x^3 + x^4)(1 - x + x^2 - x^3 + x^4)/(1 - x - x^3 - x^5 - x^7 - x^9 - x^11). - Charles R Greathouse IV, Jun 19 2011
Comments