cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000064 Partial sums of (unordered) ways of making change for n cents using coins of 1, 2, 5, 10 cents.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 50, 62, 77, 93, 112, 134, 159, 187, 218, 252, 292, 335, 384, 436, 494, 558, 628, 704, 786, 874, 972, 1076, 1190, 1310, 1440, 1580, 1730, 1890, 2060, 2240, 2435, 2640, 2860, 3090, 3335, 3595, 3870, 4160, 4465, 4785, 5126
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into two kinds of part 1 and one kind of parts 2, 5, and 10. - Joerg Arndt, May 10 2014

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000008.

Programs

  • Maple
    1/(1-x)^2/(1-x^2)/(1-x^5)/(1-x^10)
    a:= proc(n) local m, r; m := iquo(n, 10, 'r'); r:= r+1; (55+(119+(95+ 25*m) *m) *m) *m/6+ [1, 2, 4, 6, 9, 13, 18, 24, 31, 39][r]+ [0, 26, 61, 99, 146, 202, 267, 341, 424, 516][r]*m/6+ [0, 10, 21, 33, 46, 60, 75, 91, 108, 126][r]*m^2/2+ (5*r-5) *m^3/3 end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 05 2008
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^2)(1-x^5)(1-x^10)),{x,0,100}],x] (* Vladimir Joseph Stephan Orlovsky, Jan 25 2012 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(1/((1-x)^2*(1-x^2)*(1-x^5)*(1-x^10))+x*O(x^n),n))
    
  • PARI
    a(n)=floor((n^4+38*n^3+476*n^2+2185*n+3735)/2400+(n+1)*(-1)^n/160+(n\5+1)*[0,0,1,0,-1][n%5+1]/10) \\ Tani Akinari, May 10 2014

Formula

G.f.: 1 / ( ( 1 - x )^2 * ( 1 - x^2 ) * ( 1 - x^5 ) * ( 1 - x^10 ) ).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) + a(n-5) - 2*a(n-6) + 2*a(n-8) - a(n-9) + a(n-10) - 2*a(n-11) + 2*a(n-13) - a(n-14) - a(n-15) + 2*a(n-16) - 2*a(n-18) + a(n-19). - Fung Lam, May 07 2014
a(n) ~ n^4 / 2400 as n->oo. - Daniel Checa, Jul 11 2023

Extensions

Corrected and extended by Simon Plouffe