A000088 Number of simple graphs on n unlabeled nodes.
1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768
Offset: 0
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
- Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
- Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Keith M. Briggs, Table of n, a(n) for n = 0..87 (From link below)
- R. Absil and H. Mélot, Digenes: genetic algorithms to discover conjectures about directed and undirected graphs, arXiv preprint arXiv:1304.7993 [cs.DM], 2013.
- Natalie Arkus, Vinothan N. Manoharan and Michael P. Brenner. Deriving Finite Sphere Packings, arXiv:1011.5412 [cond-mat.soft], Nov 24, 2010. (See Table 1.)
- Leonid Bedratyuk and Anna Bedratyuk, A new formula for the generating function of the numbers of simple graphs, Comptes rendus de l'Académie Bulgare des Sciences, Tome 69, No 3, 2016, p.259-268.
- Benjamin A. Blumer, Michael S. Underwood and David L. Feder, Single-qubit unitary gates by graph scattering, arXiv:1111.5032 [quant-ph], 2011.
- Keith M. Briggs, Combinatorial Graph Theory [Gives first 140 terms]
- Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur and Hadrien Melot, House of Graphs: a database of interesting graphs, arXiv preprint arXiv:1204.3549 [math.CO], 2012.
- P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp. [Annotated scanned copy]
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. J. Cameron and C. R. Johnson, The number of equivalence patterns of symmetric sign patterns, Discr. Math., 306 (2006), 3074-3077.
- Gi-Sang Cheon, Jinha Kim, Minki Kim and Sergey Kitaev, On k-11-representable graphs, arXiv:1803.01055 [math.CO], 2018.
- CombOS - Combinatorial Object Server, Generate graphs
- Karen M. Daehli, Sarah A Obead, Hsuan-Yin Lin, and Eirik Rosnes, Improved Capacity Outer Bound for Private Quadratic Monomial Computation, arXiv:2401.06125 [cs.IR], 2024.
- R. L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
- J. P. Dolch, Names of Hamiltonian graphs, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 259-271. (Annotated scanned copy of 3 pages)
- Peter Dukes, Notes for Math 422: Enumeration and Ramsey Theory, University of Victoria BC Canada (2019). See page 36.
- D. S. Dummit, E. P. Dummit and H. Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, arXiv preprint arXiv:1512.06480 [math.NT], 2015.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Mareike Fischer, Michelle Galla, Lina Herbst, Yangjing Long, and Kristina Wicke, Non-binary treebased unrooted phylogenetic networks and their relations to binary and rooted ones, arXiv:1810.06853 [q-bio.PE], 2018.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 105.
- E. Friedman, Illustration of small graphs
- Harald Fripertinger, Graphs
- Scott Garrabrant and Igor Pak, Pattern Avoidance is Not P-Recursive, preprint, 2015.
- Lee M. Gunderson and Gecia Bravo-Hermsdorff, Introducing Graph Cumulants: What is the Variance of Your Social Network?, arXiv:2002.03959 [math.ST], 2020.
- P. Hegarty, On the notion of balance in social network analysis, arXiv preprint arXiv:1212.4303 [cs.SI], 2012.
- S. Hougardy, Home Page
- S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
- Richard Hua and Michael J. Dinneen, Improved QUBO Formulation of the Graph Isomorphism Problem, SN Computer Science (2020) Vol. 1, No. 19.
- A. Itzhakov and M. Codish, Breaking Symmetries in Graph Search with Canonizing Sets, arXiv preprint arXiv:1511.08205 [cs.AI], 2015-2016.
- Dan-Marian Joiţa and Lorentz Jäntschi, Extending the Characteristic Polynomial for Characterization of C_20 Fullerene Congeners, Mathematics (2017), 5(4), 84.
- Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes
- Maksim Karev, The space of framed chord diagrams as a Hopf module, arXiv preprint arXiv:1404.0026 [math.GT], 2014.
- J. M. Larson, Cheating Because They Can: Social Networks and Norm Violators, 2014. See Footnote 11.
- Steffen Lauritzen, Alessandro Rinaldo and Kayvan Sadeghi, On Exchangeability in Network Models, arXiv:1709.03885 [math.ST], 2017.
- O. B. Lupanov, On asymptotic estimates of the number of graphs and networks with n edges, Problems of Cybernetics [in Russian], Moscow 4 (1960): 5-21.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
- B. D. McKay, Maple program (used to redirect to here).
- B. D. McKay, Maple program [Cached copy, with permission]
- B. D. McKay, Simple graphs
- A. Milicevic and N. Trinajstic, Combinatorial Enumeration in Chemistry, Chem. Modell., Vol. 4, (2006), pp. 405-469.
- Angelo Monti and Blerina Sinaimeri, Effects of graph operations on star pairwise compatibility graphs, arXiv:2410.16023 [cs.DM], 2024. See p. 16.
- W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
- M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- E. M. Palmer, Letter to N. J. A. Sloane, no date
- Marko Riedel, Nonisomorphic graphs.
- Marko Riedel, Compact Maple code for cycle index, sequence values and ordinary generating function by the number of edges.
- R. W. Robinson, Enumeration of non-separable graphs, J. Combin. Theory 9 (1970), 327-356.
- Sage, Common Graphs (Graph Generators)
- S. S. Skiena, Generating graphs
- N. J. A. Sloane, Illustration of initial terms
- Quico Spaen, Christopher Thraves Caro and Mark Velednitsky, The Dimension of Valid Distance Drawings of Signed Graphs, Discrete & Computational Geometry (2019), 1-11.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Overview of the 17 Parts (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 1
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 2
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 3
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 4
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 5
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 6
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 7
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 8
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 9
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 10
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 11
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 12
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 13
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 14
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 15
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 16
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17
- J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
- James Turner and William H. Kautz, A survey of progress in graph theory in the Soviet Union SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 18.
- S. Uijlen and B. Westerbaan, A Kochen-Specker system has at least 22 vectors, arXiv preprint arXiv:1412.8544 [cs.DM], 2014.
- Mark Velednitsky, New Algorithms for Three Combinatorial Optimization Problems on Graphs, Ph. D. Dissertation, University of California, Berkeley (2020).
- Eric Weisstein's World of Mathematics, Simple Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Degree Sequence
- E. M. Wright, The number of graphs on many unlabelled nodes, Mathematische Annalen, December 1969, Volume 183, Issue 4, 250-253
- E. M. Wright, The number of unlabelled graphs with many nodes and edges Bull. Amer. Math. Soc. Volume 78, Number 6 (1972), 1032-1034.
- Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019.
- Index entries for "core" sequences
Crossrefs
Programs
-
Maple
# To produce all graphs on 4 nodes, for example: with(GraphTheory): L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency): # N. J. A. Sloane, Oct 07 2013 seq(GraphTheory[NonIsomorphicGraphs](n,output=count),n=1..10); # Juergen Will, Jan 02 2018 # alternative Maple program: b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2) +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])), add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)) end: a:= n-> b(n$2, []): seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
Mathematica
Needs["Combinatorica`"] Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *) permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]]; a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *) b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]; a[n_] := b[n, n, {}]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)} a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
-
Python
from itertools import combinations from math import prod, factorial, gcd from fractions import Fraction from sympy.utilities.iterables import partitions def A000088(n): return int(sum(Fraction(1<
>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024 -
Sage
def a(n): return len(list(graphs(n))) # Ralf Stephan, May 30 2014
Formula
a(n) = 2^binomial(n, 2)/n!*(1+(n^2-n)/2^(n-1)+8*n!/(n-4)!*(3*n-7)*(3*n-9)/2^(2*n)+O(n^5/2^(5*n/2))) (see Harary, Palmer reference). - Vladeta Jovovic and Benoit Cloitre, Feb 01 2003
a(n) = 2^binomial(n, 2)/n!*[1+2*n$2*2^{-n}+8/3*n$3*(3n-7)*2^{-2n}+64/3*n$4*(4n^2-34n+75)*2^{-3n}+O(n^8*2^{-4*n})] where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1). - Keith Briggs, Oct 24 2005
From David Pasino (davepasino(AT)yahoo.com), Jan 31 2009: (Start)
a(n) = a(n, 2), where a(n, t) is the number of t-uniform hypergraphs on n unlabeled nodes (cf. A000665 for t = 3 and A051240 for t = 4).
a(n, t) = Sum_{c : 1*c_1+2*c_2+...+n*c_n=n} per(c)*2^f(c), where:
..per(c) = 1/(Product_{i=1..n} c_i!*i^c_i);
..f(c) = (1/ord(c)) * Sum_{r=1..ord(c)} Sum_{x : 1*x_1+2*x_2+...+t*x_t=t} Product_{k=1..t} binomial(y(r, k; c), x_k);
..ord(c) = lcm{i : c_i>0};
..y(r, k; c) = Sum_{s|r : gcd(k, r/s)=1} s*c_(k*s) is the number of k-cycles of the r-th power of a permutation of type c. (End)
a(n) ~ 2^binomial(n,2)/n! [see Flajolet and Sedgewick p. 106, Gross and Yellen, p. 519, etc.]. - N. J. A. Sloane, Nov 11 2013
For asymptotics see also Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014
a(n) = G(1) where G(z) = (1/n!) Sum_g det(I-g z^2)/det(I-g z) and g runs through the natural matrix n X n representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, May 02 2015
From Keith Briggs, Jun 24 2016: (Start)
a(n) = 2^binomial(n,2)/n!*(
1+
2^( -n + 1)*n$2+
2^(-2*n + 3)*n$3*(n-7/3)+
2^(-3*n + 6)*n$4*(4*n^2/3 - 34*n/3 + 25) +
2^(-4*n + 10)*n$5*(8*n^3/3 - 142*n^2/3 + 2528*n/9 - 24914/45) +
2^(-5*n + 15)*n$6*(128*n^4/15 - 2296*n^3/9 + 25604*n^2/9 - 630554*n/45 + 25704) +
2^(-6*n + 21)*n$7*(2048*n^5/45 - 18416*n^4/9 + 329288*n^3/9 - 131680816*n^2/405 + 193822388*n/135 - 7143499196/2835) + ...),
where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1), using the method of Wright 1969.
(End)
a(n) = 1/n*Sum_{k=1..n} a(n-k)*A003083(k). - Andrey Zabolotskiy, Aug 11 2020
Extensions
Harary gives an incorrect value for a(8); compare A007149
Comments