cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A036357 Erroneous version of A000104.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 35, 107, 363, 1248, 4271
Offset: 0

Views

Author

Keywords

A214610 Erroneous version of A000104.

Original entry on oeis.org

1, 1, 2, 5, 12, 25, 107, 363, 1248, 4460
Offset: 1

Views

Author

Washington Bomfim, Aug 06 2012

Keywords

A000105 Number of free polyominoes (or square animals) with n cells.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603
Offset: 0

Views

Author

Keywords

Comments

For n>0, a(n) + A030228(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
The possible symmetry groups of a (nonempty) polyomino are the 10 subgroups of the dihedral group D_8 of order 8: D_8, 1, Z_2 (five times), Z_4, (Z_2)^2 (twice). - Benoit Jubin, Dec 30 2008
Names for first few polyominoes: monomino, domino, tromino, tetromino, pentomino, hexomino, heptomino, octomino, enneomino, decomino, hendecomino, dodecomino, ...
Limit_{n->oo} a(n)^(1/n) = mu with 3.98 < mu < 4.64 (quoted by Castiglione et al., with a reference to Barequet et al., 2006, for the lower bound). The upper bound is due to Klarner and Rivest, 1973. By Madras, 1999, it is now known that this limit, also known as Klarner's constant, is equal to the limit growth rate lim_{n->oo} a(n+1)/a(n).
Polyominoes are worth exploring in the elementary school classroom. Students in grade 2 can reproduce the first 6 terms. Grade 3 students can explore area and perimeter. Grade 4 students can talk about polyomino symmetries.
The pentominoes should be singled out for special attention: 1) they offer a nice, manageable set that a teacher can commercially acquire without too much expense. 2) There are also deeply strategic games and perplexing puzzles that are great for all students. 3) A fraction of students will become engaged because of the beautiful solutions.
Conjecture: Almost all polyominoes are holey. In other words, A000104(n)/a(n) tends to 0 for increasing n. - John Mason, Dec 11 2021 (This is true, a consequence of Madras's 1999 pattern theorem. - Johann Peters, Jan 06 2024)

Examples

			a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
		

References

  • S. W. Golomb, Polyominoes, Appendix D, p. 152; Princeton Univ. Pr. NJ 1994
  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
  • D. A. Klarner, The Mathematical Gardner, p. 252 Wadsworth Int. CA 1981
  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
  • Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
  • R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences classifying polyominoes by symmetry group: A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.
Cf. A001168 (not reduced by D_8 symmetry), A000104 (no holes), A054359, A054360, A001419, A000988, A030228 (chiral polyominoes).
See A006765 for another version.
Cf. also A000577, A000228, A103465, A210996 (bisection).
Excluding a(0), 8th and 9th row of A366766.

Programs

  • Mathematica
    (* In this program by Jaime Rangel-Mondragón, polyominoes are represented as a list of Gaussian integers. *)
    polyominoQ[p_List] := And @@ ((IntegerQ[Re[#]] && IntegerQ[Im[#]])& /@ p);
    rot[p_?polyominoQ] := I*p;
    ref[p_?polyominoQ] := (# - 2 Re[#])& /@ p;
    cyclic[p_] := Module[{i = p, ans = {p}}, While[(i = rot[i]) != p, AppendTo[ans, i]]; ans];
    dihedral[p_?polyominoQ] := Flatten[{#, ref[#]}& /@ cyclic[p], 1];
    canonical[p_?polyominoQ] := Union[(# - (Min[Re[p]] + Min[Im[p]]*I))& /@ p];
    allPieces[p_] := Union[canonical /@ dihedral[p]];
    polyominoes[1] = {{0}};
    polyominoes[n_] := polyominoes[n] = Module[{f, fig, ans = {}}, fig = ((f = #1; ({f, #1 + 1, f, #1 + I, f, #1 - 1, f, #1 - I}&) /@ f)&) /@ polyominoes[n - 1]; fig = Partition[Flatten[fig], n]; f = Select[Union[canonical /@ fig], Length[#1] == n &]; While[f != {}, ans = {ans, First[f]}; f = Complement[f, allPieces[First[f]]]]; Partition[Flatten[ans], n]];
    a[n_] := a[n] = Length[ polyominoes[n]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Mar 24 2015, after Jaime Rangel-Mondragón *)

Formula

a(n) = A000104(n) + A001419(n). - R. J. Mathar, Jun 15 2014
a(n) = A006749(n) + A006746(n) + A006748(n) + A006747(n) + A056877(n) + A056878(n) + A144553(n) + A142886(n). - Andrew Howroyd, Dec 04 2018
a(n) = A259087(n) + A259088(n). - R. J. Mathar, May 22 2019
a(n) = (4*A006746(n) + 4*A006748(n) + 4*A006747(n) + 6*A056877(n) + 6*A056878(n) + 6*A144553(n) + 7*A142886(n) + A001168(n))/8. - John Mason, Nov 14 2021

Extensions

Extended to n=28 by Tomás Oliveira e Silva
Link updated by William Rex Marshall, Dec 16 2009
Edited by Gill Barequet, May 24 2011
Misspelling "polyominos" corrected by Don Knuth, May 03 2016
a(29)-a(45), a(47) from Toshihiro Shirakawa
a(46) calculated using values from A001168 (I. Jensen), A006748/A056877/A056878/A144553/A142886 (Robert A. Russell) and A006746/A006747 (John Mason), Nov 14 2021

A006749 Number of asymmetric polyominoes with n cells.

Original entry on oeis.org

0, 0, 0, 1, 5, 20, 84, 316, 1196, 4461, 16750, 62878, 237394, 899265, 3422111, 13069026, 50091095, 192583152, 742560511, 2870523142, 11122817672, 43191285751, 168046076423, 654997492842, 2557223459805, 9999080270766, 39152997087077, 153511067364760
Offset: 1

Views

Author

Keywords

Comments

This sequence counts polyominoes whose symmetry group has order 1.

References

  • A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences classifying polyominoes by symmetry group: A000105, A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.

Formula

a(n) + A259090(n) = A000105(n). - R. J. Mathar, Sep 29 2021

Extensions

Extended to n=28 by Tomás Oliveira e Silva.

A001419 Number of n-celled polyominoes with holes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 6, 37, 195, 979, 4663, 21474, 96496, 425449, 1849252, 7946380, 33840946, 143060339, 601165888, 2513617990, 10466220315, 43425174374, 179630865835, 741123699012, 3050860717372, 12534339432498, 51408312232300, 210526591157926, 860989703302456
Offset: 1

Views

Author

Keywords

Comments

From John Mason, Sep 06 2022: (Start)
Conjecture: Almost all polyominoes are holey. In other words, a(n)/A000105(n) tends to 1 for increasing n.
The number of holes in a polyomino is given by the formula (based on a generalization of Pick's Theorem): H = n + 1 - i - s / 2, where:
n is the size (area) of the polyomino;
i is the number of completely internal vertices; i.e., the number of vertices that are surrounded by 4 squares;
s is the number of vertices on a single border; i.e., vertices that are the corners of 1, 2 or 3 squares, but excluding those that touch only 2 squares that are diagonally adjacent. (End)

References

  • S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition ( Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
  • Joseph S. Madachy, "Pentominoes - Some Solved and Unsolved Problems", J. Rec. Math., 2 (1969), 181-188.
  • George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A[s_] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import[ "https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A000104 = A@104;
    A000105 = A@105;
    a[n_] := A000105[[n + 1]] - A000104[[n + 1]];
    a /@ Range[40] (* Jean-François Alcover, Jan 04 2020, updated Apr 21 2024 after John Mason's b-file *)

Formula

a(n) >= A057418(n). - R. J. Mathar, Jun 15 2014
a(n) = A000105(n) - A000104(n). - Jean-François Alcover, Jan 04 2020, after R. J. Mathar in A000105.

Extensions

More terms from Joseph Myers, May 05 2002
More terms from Joseph Myers, Nov 04 2003
a(24)-a(26) from Joseph Myers, Nov 17 2010
More terms from John Mason, Oct 10 2022

A103473 Number of polyominoes consisting of 7 regular unit n-gons.

Original entry on oeis.org

24, 108, 551, 333, 558, 1605, 4418, 8350, 17507, 13512, 17775, 30467, 55264, 83252, 134422, 112514, 135175, 195122, 294091, 397852, 566007, 495773, 568602, 751172, 1031920, 1307384, 1729686, 1557663, 1737915, 2169846, 2808616, 3413064
Offset: 3

Views

Author

Sascha Kurz, Feb 07 2005

Keywords

Examples

			a(3)=24 because there are 24 polyiamonds consisting of 7 triangles and a(4)=108 because there are 108 polyominoes consisting of 7 squares.
		

Crossrefs

Extensions

More terms from Sascha Kurz, Jun 09 2006

A268311 Number of free polyominoes that form a continuous path of edge joined cells spanning an n X n square in both dimensions.

Original entry on oeis.org

1, 2, 24, 1051, 238048, 195284973, 577169894573, 6200686124225191
Offset: 1

Views

Author

Craig Knecht, Jan 31 2016

Keywords

Comments

This idea originated from the water retention model for mathematical surfaces and is identical to the concept of a "lake". A lake is body of water that has dimensions of (n-2) X (n-2) when the square size is n X n. All other bodies of water are "ponds".
Iwan Jensen with his transfer matrix algorithm provided the number of symmetrically redundant solutions. Walter Trump enumerated the symmetrically unique solutions.

Examples

			The cells with value 1 show the smallest possible lake in this 4 X 4 square:
1 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1
a(3)=24 = 6+7+7+3+1: There fit 6 5-ominoes in a 3x3 square, 7 6-ominoes in a 3x3 square, 7 7-ominoes in a 3x3 square, 3 8-ominoes in a 3x3 square, a 1 9-omino in a 3x3 square. - _R. J. Mathar_, Jun 07 2020
		

Crossrefs

Cf. A054247 (all unique water retention patterns). Diagonal of A268371.
Cf. A259088.

Extensions

a(6) corrected. Craig Knecht, May 25 2020

A120102 Number of polyominoes consisting of 8 regular unit n-gons.

Original entry on oeis.org

66, 369, 2812, 1448, 2876, 10102, 34838, 73675, 181127, 131801, 185297, 352375, 725869, 1180526, 2104485, 1694978, 2123088, 3291481, 5402087, 7739008, 11832175, 10079003, 11917261, 16624712, 24389611, 32317393, 45260884
Offset: 3

Views

Author

Sascha Kurz, Jun 09 2006

Keywords

Examples

			a(3)=66 because there are 66 polyiamonds consisting of 8 triangles and a(4)=369 because there are 369 polyominoes consisting of 8 squares.
		

Crossrefs

A120104 Number of polyominoes consisting of 10 regular unit n-gons.

Original entry on oeis.org

448, 4655, 76092, 30490, 80075, 430302, 2285047, 6078768, 20376032, 13303523, 21208739, 49734303, 131517548, 249598727, 540742895, 404616118, 549711709, 983715865, 1910489463, 3070327312
Offset: 3

Views

Author

Sascha Kurz, Jun 09 2006

Keywords

Examples

			a(3)=448 because there are 448 polyiamonds consisting of 10 triangles;
a(4)=4655 because there are 4655 polyominoes consisting of 10 squares.
		

Crossrefs

A070765 Number of polyiamonds with n cells, without holes.

Original entry on oeis.org

1, 1, 1, 3, 4, 12, 24, 66, 159, 444, 1161, 3226, 8785, 24453, 67716, 189309, 528922, 1484738, 4172185, 11756354, 33174451, 93795220, 265565628, 753060469, 2138206966, 6078931114, 17302380313, 49302121747, 140627400927, 401510058179
Offset: 1

Views

Author

Joseph Myers, May 05 2002

Keywords

Comments

If holes are allowed, we get A000577.

Crossrefs

Equals A000577(n)-A070764(n). Cf. A000104, A018190.

Extensions

More terms from Joseph Myers, Nov 11 2003
a(29) and a(30) from Joseph Myers, Nov 21 2010
Showing 1-10 of 37 results. Next