cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000115 Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 24, 26, 29, 31, 34, 36, 39, 42, 45, 48, 51, 54, 58, 61, 65, 68, 72, 76, 80, 84, 88, 92, 97, 101, 106, 110, 115, 120, 125, 130, 135, 140, 146, 151, 157, 162, 168, 174, 180, 186, 192, 198, 205, 211, 218, 224, 231, 238
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, or 5.
First differences are in A008616. First differences of A001304. Pairwise sums of A008720.

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,5).
  • M. Jeger, Ein partitions problem ..., Elemente de Math., 13 (1958), 97-120.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Round((n+4)^2/20): n in [0..70]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    1/((1-x)*(1-x^2)*(1-x^5)): seq(coeff(series(%, x, n+1), x, n), n=0..65);
    # next Maple program:
    s:=proc(n) if n mod 5 = 0 then RETURN(1); fi; if n mod 5 = 1 then RETURN(0); fi; if n mod 5 = 2 then RETURN(1); fi; if n mod 5 = 3 then RETURN(-1); fi; if n mod 5 = 4 then RETURN(-1); fi; end: f:=n->(2*n^2+16*n+27+5*(-1)^n+8*s(n))/40: seq(f(n), n=0..65);  # from Jeger's paper
  • Mathematica
    nn=50;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^5),{x,0,nn}],x]  (* Geoffrey Critzer, Jan 20 2013 *)
    LinearRecurrence[{1,1,-1,0,1,-1,-1,1},{1,1,2,2,3,4,5,6},70] (* Harvey P. Dale, Sep 27 2019 *)
  • PARI
    a(n)=(n^2+8*n+26)\20 \\ Charles R Greathouse IV, Jun 23 2011

Formula

a(n) = round((n+4)^2/20).
a(n) = a(-8 - n) for all n in Z. - Michael Somos, May 28 2014