A119537 Determinant of n X n matrices of first n^2 denumerants (A000115).
1, 0, -3, -3, 0, -54, 343, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
a(6) = -54 = -2 * 3^3. a(7) = 343 = 7^3. a(8) = 0 because of the singular matrix 0 = |..1...1...2...2...3...4...5...6| |..7...8..10..11..13..14..16..18| |.20..22..24..26..29..31..34..36| |.39..42..45..48..51..54..58..61| |.65..68..72..76..80..84..88..92| |.97.101.106.110.115.120.125.130| |135.140.146.151.157.162.168.174| |180.186.192.198.205.211.218.224|.
Programs
-
Mathematica
clst = CoefficientList[ Series[1/((1 - x)(1 - x^2)(1 - x^5)), {x, 0, 105^2 - 1}], x]; f[n_] := Det[ Partition[ Take[clst, n^2], n]]; Array[f,100] (* Robert G. Wilson v, Jun 07 2006 *)
Formula
a(n) = determinant[A000115(k) from k=1 to n^2].
Extensions
More terms from Robert G. Wilson v, Jun 07 2006
Comments