cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A001299 Number of ways of making change for n cents using coins of 1, 5, 10, 25 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 49, 49, 49, 49, 49, 60, 60, 60, 60, 60, 73, 73, 73, 73, 73, 87, 87, 87, 87, 87, 103, 103, 103, 103, 103
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

a(n) = A001300(n) = A169718(n) for n < 50. - Reinhard Zumkeller, Dec 15 2013
Number of partitions of n into parts 1, 5, 10, and 25. - Joerg Arndt, Sep 05 2014

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 4*x^10 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Programs

  • Haskell
    a001299 = p [1,5,10,25] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)), {x, 0, 65} ], x ]
    Table[Length[FrobeniusSolve[{1,5,10,25},n]],{n,0,80}] (* Harvey P. Dale, Dec 01 2015 *)
    a[ n_] := With[ {m = Quotient[n, 5] / 10}, Round[ (4 m + 3) (5 m + 1) (5 m + 2) / 6]]; (* Michael Somos, Feb 23 2017 *)
  • PARI
    a(n)=floor((n\5+1)*((n\5+2)*(2-n%5)/100+[54,27,-2,-33,-66][n%5+1]/500)+(2-5*(n%5%2))*(-1)^n/40+(2*n^3+123*n^2+2146*n+16290)/15000) \\ Tani Akinari, May 09 2014
    
  • PARI
    {a(n) = my(m=n\5 / 10); round((4*m + 3) * (5*m + 1) * (5*m + 2) / 6)}; /* Michael Somos, Feb 23 2017 */

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = round((100*x^3 + 135*x^2 +53*x)/6) + 1 with x= floor(n/5)/10. See link "Derivation of formulas". - Gerhard Kirchner, Feb 23 2017

A001300 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Number of partitions of n into parts 1, 5, 10, 25, and 50. - Joerg Arndt, May 10 2014
a(n) = A001299(n) for n < 50; a(n) = A169718(n) for n < 100. - Reinhard Zumkeller, Dec 15 2013

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1, Problems 1 and 2.

Crossrefs

Programs

  • Haskell
    a001300 = p [1,5,10,25,50] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Maple
    1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50));
  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 65} ], x ]
  • PARI
    a(n)=floor(((n\5)^4+38*(n\5)^3+476*(n\5)^2+2185*(n\5)+3735)/2400+(n\5+1)*(-1)^(n\5)/160+(n\5\5+1)*[0,0,1,0,-1][n\5%5+1]/10) \\ Tani Akinari, May 10 2014

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).

A001312 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 50, 100 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 342, 357, 379, 394, 416, 438, 460, 482, 504, 526
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, 50, and 100. - Joerg Arndt, Sep 05 2014

Examples

			1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 8*x^9 + 11*x^10 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[1/((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^50)(1 - x^100)), {x, 0, n}]
    Table[Length[FrobeniusSolve[{1,2,5,10,50,100},n]],{n,0,60}] (* Harvey P. Dale, Dec 29 2017 *)

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)).

A001313 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 20, 50 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, 20, and 50. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Cf. A001319.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50)), {x, 0, 50}], x]
    Table[Length[FrobeniusSolve[{1,2,5,10,20,50},n]],{n,0,60}] (* (very slow) Harvey P. Dale, Dec 25 2011 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50))+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50)).

A169718 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 and 100 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77, 77, 77, 93, 93, 93, 93, 93, 112, 112, 112, 112, 112, 134, 134
Offset: 0

Views

Author

N. J. A. Sloane, Apr 20 2010

Keywords

Comments

a(n) = A001300(n) for n < 100; a(n) = A001299(n) for n < 50. - Reinhard Zumkeller, Dec 15 2013
Number of partitions of n into parts 1, 5, 10, 25, 50, and 100. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Programs

  • Haskell
    a169718 = p [1,5,10,25,50,100] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
  • Mathematica
    Table[Length[FrobeniusSolve[{1,5,10,25,50,100},n]],{n,0,80}] (* or *) CoefficientList[Series[1/((1-x)(1-x^5)(1-x^10)(1-x^25)(1-x^50)(1-x^100)),{x,0,80}],x] (* Harvey P. Dale, Dec 25 2011 *)

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100)).

A001301 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 65, 71, 78, 84, 91, 102, 109, 120, 127, 138, 151, 162, 175, 186, 199, 217, 230, 248, 261, 279, 300, 318, 339, 357, 378, 406, 427, 455, 476, 504, 536, 564, 596, 624, 656
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, and 25. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Programs

  • Maple
    M := Matrix(43, (i,j)-> if (i=j-1) or (j=1 and member(i, [1, 2, 5, 8, 10, 13, 16, 17, 25, 28, 31, 32, 36, 37, 40, 43])) then 1 elif j=1 and member(i, [3, 6, 7, 11, 12, 15, 18, 26, 27, 30, 33, 35, 38, 41, 42]) then -1 else 0 fi); a := n -> (M^(n))[1,1]; seq (a(n), n=0..51); # Alois P. Heinz, Jul 25 2008
  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^25)), {x, 0, 55} ], x ]
    Table[Length[FrobeniusSolve[{1,2,5,10,25},n]],{n,0,60}] (* Harvey P. Dale, Jan 19 2020 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)) + O(x^100)) \\ Michel Marcus, Sep 05 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)).

A001302 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25, 50 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 65, 71, 78, 84, 91, 102, 109, 120, 127, 138, 151, 162, 175, 186, 199, 217, 230, 248, 261, 279, 300, 318, 339, 357, 378, 407, 428, 457, 478, 507, 540, 569, 602, 631, 664
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, 25, and 50. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Programs

  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 55} ], x ]
    Array[Length@IntegerPartitions[#, All, {1, 2, 5, 10, 25, 50}]&, 100, 0] (* Giorgos Kalogeropoulos, Apr 24 2021 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50))+ O(x^100)) \\ Michel Marcus, Sep 05 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).
a(n) = Sum_{k=0..floor(n/2)} A001300(n-2*k). - Christian Krause, Apr 24 2021

A091967 a(n) is the n-th term of sequence A_n, ignoring the offset, or -1 if A_n has fewer than n terms.

Original entry on oeis.org

0, 2, 1, 0, 2, 3, 0, 6, 6, 4, 44, 1, 180, 42, 16, 1096, 7652, 13781, 8, 24000, 119779, 458561, 152116956851941670912, 1054535, -53, 26, 27, 59, 4806078, 2, 35792568, 3010349, 2387010102192469724605148123694256128, 2, 0, -53, 43, 0, -4097, 173, 37338, 111111111111111111111111111111111111111111, 30402457, 413927966
Offset: 1

Views

Author

Proposed by several people, including Jeff Burch and Michael Joseph Halm

Keywords

Comments

This version ignores the offset of A_n and just counts from the beginning of the terms shown in the OEIS entry.
Thus a(8) = 6 because A_8 begins 1,1,2,2,3,4,5,6,... [even though A_8(8) is really 7].
The value a(n) = -1 could arise in two different ways, but it will be easy to decide which. - N. J. A. Sloane, Nov 27 2016
From M. F. Hasler, Sep 22 2013: (Start)
The value of a(91967) can be chosen at will.
Note that this sequence may change if the initial terms in A_n are altered, which does happen from time to time, usually because of the addition of an initial term.
After a(47), currently unknown, the sequence continues with a(48) = A48(47) = 1497207322929, a(49) = A49(48) = unknown, a(50) = A50(49) = unknown, a(51) = A51(50) = 1125899906842625, a(52)=97, a(53) = -1 (since A000053 has only 29 terms). (End)
a(58) = A000058(57) = 138752...985443 (29334988649136302 digits) is too large to include in the b-file. - Pontus von Brömssen, May 21 2022

Examples

			a(1) = 0 since A000001 has offset 0, and begins with A000001(0) = 0.
a(26) = 26 because the 26th term of A000026 = 26.
		

Crossrefs

Extensions

Corrected and extended by Jud McCranie; further extended by N. J. A. Sloane and E. M. Rains, Dec 08 1998
Corrected and extended by N. J. A. Sloane, May 25 2005
a(26), a(36) and a(42) corrected by M. F. Hasler, Jan 30 2009
a(43) and a(44) added by Daniel Sterman, Nov 27 2016
a(1) corrected by N. J. A. Sloane, Nov 27 2016 at the suggestion of Daniel Sterman
Definition and comments changed by N. J. A. Sloane, Nov 27 2016

A067996 Number of ways of making change for n cents using coins of 1, 2, 3, 5, 10, 20, 25, 50, 100 cents (all historical U.S.A. coinage from 1 to 100 cents).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 21, 25, 31, 37, 44, 53, 62, 72, 84, 96, 113, 128, 147, 167, 189, 216, 243, 273, 307, 342, 386, 428, 477, 529, 585, 650, 716, 788, 867, 949, 1046, 1141, 1248, 1361, 1481, 1617, 1755, 1904, 2065, 2232, 2424, 2614, 2824, 3045, 3278
Offset: 0

Views

Author

Rick L. Shepherd, Feb 07 2002

Keywords

Comments

The U.S.A. issued the following unusual denomination coins during the 19th century: 2-cent pieces, 1864-1873; 3-cent pieces, 1851-1889; and 20-cent pieces, 1875-1878.

Examples

			a(5)=6 because change can be made for 5 cents in these 6 ways: (1) 5 1-cent coins, (2) 3 1-cent, 1 2-cent, (3) 2 1-cent, 1 3-cent, (4) 1 1-cent, 2 2-cent, (5) 1 2-cent, 1 3-cent, (6) 1 5-cent coin.
		

References

  • R. S. Yeoman, A Guide Book of United States Coins, Ed. Kenneth Bressett, 53rd Edition (2000). New York: St. Martin's Press, 1999. pp. 104-106, 135. (also known as The Official Red Book of United States Coins)

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[1/((1 - x)(1 - x^2)(1 - x^3)(1 - x^5)(1 - x^10)(1 - x^20)(1 - x^25)(1 - x^50)(1 - x^100)), {x, 0, 55} ], x ]
  • PARI
    a(n)=polcoeff(1/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^25)*(1-x^50)*(1-x^100)+x*O(x^n)), n)

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^25)*(1-x^50)*(1-x^100))

Extensions

Offset corrected to 0 by Ray Chandler, Dec 04 2023

A000064 Partial sums of (unordered) ways of making change for n cents using coins of 1, 2, 5, 10 cents.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 50, 62, 77, 93, 112, 134, 159, 187, 218, 252, 292, 335, 384, 436, 494, 558, 628, 704, 786, 874, 972, 1076, 1190, 1310, 1440, 1580, 1730, 1890, 2060, 2240, 2435, 2640, 2860, 3090, 3335, 3595, 3870, 4160, 4465, 4785, 5126
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into two kinds of part 1 and one kind of parts 2, 5, and 10. - Joerg Arndt, May 10 2014

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000008.

Programs

  • Maple
    1/(1-x)^2/(1-x^2)/(1-x^5)/(1-x^10)
    a:= proc(n) local m, r; m := iquo(n, 10, 'r'); r:= r+1; (55+(119+(95+ 25*m) *m) *m) *m/6+ [1, 2, 4, 6, 9, 13, 18, 24, 31, 39][r]+ [0, 26, 61, 99, 146, 202, 267, 341, 424, 516][r]*m/6+ [0, 10, 21, 33, 46, 60, 75, 91, 108, 126][r]*m^2/2+ (5*r-5) *m^3/3 end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 05 2008
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^2)(1-x^5)(1-x^10)),{x,0,100}],x] (* Vladimir Joseph Stephan Orlovsky, Jan 25 2012 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(1/((1-x)^2*(1-x^2)*(1-x^5)*(1-x^10))+x*O(x^n),n))
    
  • PARI
    a(n)=floor((n^4+38*n^3+476*n^2+2185*n+3735)/2400+(n+1)*(-1)^n/160+(n\5+1)*[0,0,1,0,-1][n%5+1]/10) \\ Tani Akinari, May 10 2014

Formula

G.f.: 1 / ( ( 1 - x )^2 * ( 1 - x^2 ) * ( 1 - x^5 ) * ( 1 - x^10 ) ).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) + a(n-5) - 2*a(n-6) + 2*a(n-8) - a(n-9) + a(n-10) - 2*a(n-11) + 2*a(n-13) - a(n-14) - a(n-15) + 2*a(n-16) - 2*a(n-18) + a(n-19). - Fung Lam, May 07 2014
a(n) ~ n^4 / 2400 as n->oo. - Daniel Checa, Jul 11 2023

Extensions

Corrected and extended by Simon Plouffe
Showing 1-10 of 15 results. Next