cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000008 Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 341, 356, 377, 392, 413, 434, 455, 476, 497, 518, 546
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, and 10.
There is a unique solution to this puzzle: "There are a prime number of ways that I can make change for n cents using coins of 1, 2, 5, 10 cents; but a semiprime number of ways that I can make change for n-1 cents and for n+1 cents." There is a unique solution to this related puzzle: "There are a prime number of ways that I can make change for n cents using coins of 1, 2, 5, 10 cents; but a 3-almost prime number of ways that I can make change for n-1 cents and for n+1 cents." - Jonathan Vos Post, Aug 26 2005

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 8*x^9 + 11*x^10 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000008 = p [1,2,5,10] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Magma
    [#RestrictedPartitions(n,{1,2,5,10}):n in [0..60]]; // Marius A. Burtea, May 07 2019
  • Maple
    M:= Matrix(18, (i,j)-> if(i=j-1 and i<17) or (j=1 and member(i, [2,5,10,17,18])) or (i=18 and j=18) then 1 elif j=1 and member(i, [7,12,15]) then -1 else 0 fi); a:= n-> (M^(n+1))[18,1]; seq(a(n), n=0..51); # Alois P. Heinz, Jul 25 2008
    # second Maple program:
    a:= proc(n) local m, r; m := iquo(n, 10, 'r'); r:= r+1; ([23, 26, 35, 38, 47, 56, 65, 74, 83, 92][r]+ (3*r+ 24+ 10*m) *m) *m/6+ [1, 1, 2, 2, 3, 4, 5, 6, 7, 8][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 05 2008
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)), {x, 0, n}]
    a[n_, d_] := SeriesCoefficient[1/(Times@@Map[(1-x^#)&, d]), {x, 0, n}] (* general case for any set of denominations represented as a list d of coin values in cents *)
    Table[Length[FrobeniusSolve[{1,2,5,10},n]],{n,0,70}] (* Harvey P. Dale, Apr 02 2012 *)
    LinearRecurrence[{1, 1, -1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28}, 100] (* Vincenzo Librandi, Feb 10 2016 *)
    a[ n_] := Quotient[ With[{r = Mod[n, 10, 1]}, n^3 + 27 n^2 + (191 + 3 {4, 13, 0, 5, 8, 9, 8, 5, 0, 13}[[r]]) n + 25], 600] + 1; (* Michael Somos, Mar 06 2018 *)
    Table[Length@IntegerPartitions[n,All,{1,2,5,10}],{n,0,70}] (* Giorgos Kalogeropoulos, May 07 2019 *)
  • Maxima
    a(n):=floor(((n+17)*(2*n^2+20*n+81)+15*(n+1)*(-1)^n+120*((floor(n/5)+1)*((1+(-1)^mod(n,5))/2-floor(((mod(n,5))^2)/8))))/1200); /* Tani Akinari, Jun 21 2013 */
    
  • PARI
    {a(n) = if( n<-17, -a(-18-n), if( n<0, 0, polcoeff( 1 / ((1 - x) * (1 - x^2) * (1 - x^5) * (1 - x^10)) + x * O(x^n), n)))}; /* Michael Somos, Apr 01 2003 */
    
  • PARI
    Vec( 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)) + O(x^66) ) \\ Joerg Arndt, Oct 02 2013
    
  • PARI
    {a(n) = my(r = (n-1)%10 + 1); (n^3 + 27*n^2 + (191 + 3*[4, 13, 0, 5, 8, 9, 8, 5, 0, 13][r])*n + 25)\600 + 1}; /* Michael Somos, Mar 06 2018 */
    

Formula

G.f.: 1 / ((1 - x) * (1 - x^2) * (1 - x^5) * (1 - x^10)). - Michael Somos, Nov 17 1999
a(n) - a(n-1) = A025810(n). - Michael Somos, Dec 15 2002
a(n) = a(n-2) + a(n-5) - a(n-7) + a(n-10) - a(n-12) - a(n-15) + a(n-17) + 1. - Michael Somos, Apr 01 2003
a(n) = -a(-18-n). - Michael Somos, Apr 01 2003
a(n) = (q+1)*(h(n) - q*(3n-10q+7)/6) with q = floor(n/10) and h(n) = A000115(n) = round((n+4)^2/20). See link "Derivation of formulas". - Gerhard Kirchner, Feb 10 2017
a(n) = floor((2*n^3 + 54*n^2 + 421*n + 15*n*(-1)^n + 24*n * ((-1)^[(n mod 5)>2] - [(n mod 5)=1]) + 1248)/1200). - Hoang Xuan Thanh, Jun 27 2025

A001313 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 20, 50 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, 20, and 50. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Cf. A001319.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50)), {x, 0, 50}], x]
    Table[Length[FrobeniusSolve[{1,2,5,10,20,50},n]],{n,0,60}] (* (very slow) Harvey P. Dale, Dec 25 2011 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50))+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50)).

A001301 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 65, 71, 78, 84, 91, 102, 109, 120, 127, 138, 151, 162, 175, 186, 199, 217, 230, 248, 261, 279, 300, 318, 339, 357, 378, 406, 427, 455, 476, 504, 536, 564, 596, 624, 656
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, and 25. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Programs

  • Maple
    M := Matrix(43, (i,j)-> if (i=j-1) or (j=1 and member(i, [1, 2, 5, 8, 10, 13, 16, 17, 25, 28, 31, 32, 36, 37, 40, 43])) then 1 elif j=1 and member(i, [3, 6, 7, 11, 12, 15, 18, 26, 27, 30, 33, 35, 38, 41, 42]) then -1 else 0 fi); a := n -> (M^(n))[1,1]; seq (a(n), n=0..51); # Alois P. Heinz, Jul 25 2008
  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^25)), {x, 0, 55} ], x ]
    Table[Length[FrobeniusSolve[{1,2,5,10,25},n]],{n,0,60}] (* Harvey P. Dale, Jan 19 2020 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)) + O(x^100)) \\ Michel Marcus, Sep 05 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)).

A001302 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25, 50 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 65, 71, 78, 84, 91, 102, 109, 120, 127, 138, 151, 162, 175, 186, 199, 217, 230, 248, 261, 279, 300, 318, 339, 357, 378, 407, 428, 457, 478, 507, 540, 569, 602, 631, 664
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, 10, 25, and 50. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Programs

  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 55} ], x ]
    Array[Length@IntegerPartitions[#, All, {1, 2, 5, 10, 25, 50}]&, 100, 0] (* Giorgos Kalogeropoulos, Apr 24 2021 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50))+ O(x^100)) \\ Michel Marcus, Sep 05 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).
a(n) = Sum_{k=0..floor(n/2)} A001300(n-2*k). - Christian Krause, Apr 24 2021

A182086 Number of ways of making change for n Pfennig using Deutschmark coins.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 342, 357, 379, 394, 416, 438, 460, 482, 504, 526
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2012

Keywords

Comments

The Pfennig was the subunit of the Deutsche Mark, the currency of Germany until the adoption of the Euro in 2002; the coins were (business strike): 1 Pfg, 2 Pfg, 5 Pfg, 10 Pfg, 50 Pfg, 1 DM = 100 Pfg, 2 DM and 5 DM;
a(n) = A000008(n) for n < 50; a(50) = A000008(50) + 1 = 342;
a(n) = A001312(n) for n < 200; a(200) = A001312(200) + 1 = 26905.
Number of partitions of n into parts 1, 2, 5, 10, 50, 100, 200, and 500. - Joerg Arndt, Jul 08 2013

Examples

			Number of partitions of coin values into coin values:
a(1) = #{1} = 1;
a(2) = #{2, 1+1} = 2;
a(5) = #{5, 2+2+1, 2+1+1+1, 1+1+1+1+1} = 4;
a(10) = #{10, 5+5, 5+2+2+1, 5+2+1+1+1, 5+5x1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 11;
a(50) = #{50,10+10+10+10+10, 10+10+10+10+5+5, 10+10+10+10+5+2+2+1, 10+10+10+10+5+2+1+1+1, 10+10+10+10+5+10x1, ...} = 342;
a(100) = 2499;
a(200) = 26905;
a(500) = 1229587.
		

Crossrefs

Programs

  • Haskell
    a182086 = p [1,2,5,10,50,100,200,500] where
       p  0 = 1; p []  = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    
  • Mathematica
    CoefficientList[Series[1/((1 - x)*(1 - x^2)*(1 - x^5)*(1 - x^10)*(1 - x^50)*(1 - x^100)*(1 - x^200)*(1 - x^500)), {x, 0, 50}], x] (* G. C. Greubel, Aug 20 2017 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500))+O(x^566)) \\ Joerg Arndt, Jul 08 2013

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500)). - Joerg Arndt, Jul 08 2013

A367253 The number of ways of making change for 5n cents with Canadian coins (5, 10, 25, 100, 200).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 24, 26, 30, 32, 36, 38, 42, 46, 50, 54, 58, 62, 68, 72, 78, 82, 88, 94, 100, 106, 112, 118, 128, 134, 144, 150, 160, 170, 180, 190, 200, 210, 224, 234, 248, 258, 272, 286, 300, 314, 328, 342, 362
Offset: 0

Views

Author

Johann Peters, Nov 11 2023

Keywords

Comments

Since 2012 the Canadian penny has been discontinued. The coins now commonly used are the nickel (5 cents), the dime (10 cents), the quarter (25 cents), the loonie (100 cents), and the toonie (200 cents).
Number of partitions of n into parts 1, 2, 5, 20, 40. - Alois P. Heinz, Nov 11 2023

Crossrefs

Programs

  • Mathematica
    a[n_]:=Length[FrobeniusSolve[{5,10,25,100,200},5*n]]; a/@Range[0,100] (* Ivan N. Ianakiev, Nov 21 2023 *)
    CoefficientList[Series[1/((1-x)*(1-x^2)*(1-x^5)*(1-x^20)*(1-x^40)),{x,0,1000}],x] (* Ray Chandler, Nov 22 2023 *)

Formula

From Alois P. Heinz, Nov 11 2023: (Start)
G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^20)*(1-x^40)).
a(20*n) = A307849(n). (End)

A339094 Number of (unordered) ways of making change for n US Dollars using the current US denominations of $1, $2, $5, $10, $20, $50 and $100 bills.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740, 793, 828, 881, 916
Offset: 0

Views

Author

Robert G. Wilson v, Nov 25 2020

Keywords

Comments

Not the same as A001313. First difference appears at A001313(100) being 4562, whereas a(100) is 4563; obviously one more than A001313(100).
Not the same as A057537.
Number of partitions of n into parts 1, 2, 5, 10, 20, 50 and 100.

Examples

			a(5) is 4 because 1+1+1+1+1 = 2+1+1+1 = 2+2+1 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ IntegerPartitions[n, All, {1, 2, 5, 10, 20, 50, 100}]; Array[f, 75, 0] (* or *)
    CoefficientList[ Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50) (1 - x^100)), {x, 0, 75}], x] (* or *)
    Table[ Length@ FrobeniusSolve[{1, 2, 5, 10, 20, 50, 100}, n], {n, 0, 75}] (* much slower *)
  • PARI
    coins(v[..])=my(x='x); prod(i=1, #v, 1/(1-x^v[i]))
    Vec(coins(1, 2, 5, 10, 20, 50, 100)+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50)*(1-x^100)).
Showing 1-7 of 7 results.